
E1NO

LLJDEC i

DEPARTMENT OF COMPUTER SCIENCE%,.

E~xq6rjZ7c4>7/1
,ii

Yale Sparse Matrix Package* ,

11. fhe Nonsymetric Codesy i

SC.Eisenstat, M. C./tursky,

M. H./Schultz,=Z3 A. H./Sherman

Research Report #114 /

1This research was supported in part by ONR Grant N00014-76-X,
NSF Grant MCS 76-11460, AFOSR Grant F49620-77-C-0037, and the Chevron Oil
Field Research Company.

2Department of Computer Science, Yale University.

3Department of Electrical Engineering and Computer Science, University

of California, Berkeley.

4Department of Computer Science, The University of Texas at Austin.

1. Introduction

Consider the NxN system of linear equations WtC. D 9L m: U Wit'"

(1) H x - b,

where the coefficient matrix H is large, sparse, and nonsymmetric.

Assume that M can be factored in the form

H - L D U,

where L is a lower triangular matrix, D is a diagonal matrix, and U is a

unit upper triangular matrix. Such systems arise frequently in

scientific computation, e.g., in finite difference and finite element

approximations to non-self-adjoint elliptic boundary value problems. tt-;-

this report,-we present~.a package of efficient, reliable,

well-documented, and portable FORTRAN subroutines for solving these

systems. See [3] for a corresponding package for symmetric problems.

Direct methods for solving (1) are generally variations of Gaussian

elimination. We form the LDU decomposition of A, and successively solve

the triangular systems

(2) L y - b, D z - y, U x - z.

When M is large (N >> 1), (dense) Gaussian elimination is prohibitively

expensive in terms of both the work (- 2/3 N 3 multiplies) and storage

(N2 words) required. But, since M is sparse, most entries of M, L, and

U are zero and there are significant advantages to factoring M without

-3-

storing or operating on these zeroes. Recently, a nimber of

implementations of sparse Gaussian elimination have appea:ed based on

this idea, cf., (2, 6, 7, 81.

In section 2, we describe the scheme used for storing sparse

matrices, while, in section 3, we give an overview of the package from

the point of view of the user; for further details of the algorithms

employed, see (4, 5]. In section 4, we illustrate the performance of

the package on a typical model problem. Listings of the three sets of

subroutines for factoring and solving the class of sparse nonsymmetric

systems under consideration appear in Appendices 1, 2, and 3. These

three sets of subroutines have different storage schemes and basically

trade-off run-time efficiency for storage. Appendix 4 contains a test

driver which sets up a problem and calls all three sets of subroutines

for solution. A sample output appears as Appendix 5.

-4-

2. Spas Matrix Storage Schemes

Since the coefficient matrix M and the triangular factors L and U

are large and sparse, it is inefficient to store them as dense matrices.

The package has two schemes for storing sparse matrices, called the

"uncompressed storage scheme" and the "compressed storage scheme." The

input matrix M is always stored using the first of these, while the

triangular factors L and U may be stored using either one, depending on

which subroutines are used. The subroutine NDRV uses the "uncompressed

storage scheme" for L and U while the subroutines TDRV and CDRV use the

"compressed storage scheme."

The uncompressed storage scheme has been used previously in various

forms, cf. [1, 6). To use it to store the input matrix M requires

three one-dimensional arrays: IA, JA, and A. The nonzero en *ies of M

are stored row-by-row in the REAL array A. To identify the individual

nonzero entries in a row, we need to know in which column each entry

lies. The INTEGER array JA contains the column indices which correspond

to the nonzero entries of M, i.e., if A(K) - M(I,J), then JA(K) - J. In

addition, we need to know where each row starts and how long it is. The

INTEGER array IA contains the index positions in JA and A where the rows

of M begin, i.e., if M(I,J) is the first (leftmost) entry of the I-th

row and A(K) - M(I,J), then IA(I) - K. Moreover, IA(N+I) is defined as

the index in JA and A of the first locaLion following the last element

in the last row. Thus, the nuuber of entries in the I-th row is given

by IA(I+1) - IA(I), the nonzero entries of the I-th row are stored

consecutively in

A(IA(1)), k(IA(1)+l), .. ,A(IA(1+1)-l),

and the corresponding column indices are stored consecutively in

JA(IA(I)), JA(IA(l)+l), ... , JA(IA(1+1)-l).

For example, the 5x5 matrix

1. 0. 2. 0. 0.

0. 3. 0. 0. 0.

M 0 0. 4. 5. 6. 0.

0. 0. 0. 7. 0.

0. 0. 0. 8. 9.

is stored as

II 2 3 4 5 6 7 8 9

IAI 1 3 4 7 8 10

JA I 1 3 2 2 3 4 4 4 5

A I 1. 2. 3. 4. 5. 6. 7. 8. 9.

The overhead in this storage scheme is the storage required for the

INTEGER arrays IA and JA. But since IA has N+I entries and JA has one

entry for each element of A, the total overhead is approximately equal

to the number of nonzero entries in M.

-6-

The triangular matrices L and U are stored in basically the me

fashion using the arrays IL, JL, L and IU, JU, U respectively, except

that the diagonal entries are not stored in these arrays. The diagonal

entries of L and U are known to be ones and are not scored and the array

D is used to store the reciprocals of the diagonal entries of the

diagonal matrix D.

In certain situations, where storage is at a premium, it is

essential to reduce storage overhead, even at the cost of decreased

runtime efficiency. This can be done by storing L and U with the more

complex compressed storage scheme. This scheme incurs more operational

overhead than the uncompressed storage scheme, but in many important

cases the storage requirement can be substantially reduced. For a

detailed description, see [4, 5, 91.

-7-

3. A Sparse Nonsymmetric Matrix Package

The package consists of a test driver, three driver subroutines,

and eight subroutines (see Figure 1). The three drivers (subroutines

NDRV, TDRV, and CDRV) are specific implementation designs which

illustrate the space-time tradeoff mentioned in section 2. The test

driver (subroutine NSTST) sets up a model sparse nonsymmetric system of

linear equations and calls each of the three driver subroutines to solve

the linear system. In the remainder of this section, we describe each

of these subroutines in somewhat greater detail. The codes themselves

are extensively documented; for further details about the algorithms

employed see (4, 51.

Figure 1: A schematic overview of the sparse symmetric matrix package

4-- ..- +

I NSTST I

INDRV I ITDRV I I CDRV I

... 4- ----- -- ---- +

I NSF I I NNF I I NNS I I TRK I IRocI INsFcI I NNFC I NNSC I

4----- 4------ ------ ----- 4----- 4----4- 4----- 4-------

Our basic design for the implementation of sparse elimination

follows that of Chang (1], which has proved to be especially robust.

The first implementation, NDRV. is designed for speed. It uses the

uncompressed storage scheme for M. L, and U because of the smaller

operational overhead associated with it. We break the computation up

into three distinct phases: symbolic factorizition (subroutine NSF),

numeric factorization and the solution for one right-hand side

(subroutine NNF), and forward and back solution for additional

right-hand sides (subroutine NNS). The subroutine NSF computes the zero

structures of L and U from that of H (disregarding the numerical entries

in M). The subroutine NNF then uses the structural information

generated by NSF to compute the numerical entries of L and U and to

solve for one right-hand side.

The main advantage of splitting up the computation in this way is

flexibility. To solve a single system of equations, it suffices to use

NSF and NNF (PATH=I in NDRV). It should be pointed out here that a one

line modification of NNF can be madc to allow the solution of a single

system without storing L: simply comment out the line

L(t) - - LI,

as indicated in the code. This change will yield substantial storage

savings without the loss in efficiency incurred by TDRV. To solve

several systems in which the coefficient matrices have the same zero

structure, it suffices to use NSF and NNF only once each for the first

system and then to use NNF once for each subsequent system (PATH-2 in

-9-

NDRV). Finally, to solve several systems with the same coefficient

matrix but different right hand sides, it suffices to use NSF and NNF

only once each for the first system, and then to use NNS once for each

subsequent system (PATH-3 in NDRV).

A drawback to the multi-phase design of NDRV is that it is

necessary to store the description of the zero structures of both L and

U. By giving up some flexibility, the second implementation, TDRV,

greatly reduces the storage requirements. The entire computation is

performed in a single phase (subroutine TRK) to avoid storing either the

description or the numerical entries of L. Moreover, U is stored with

the compressed storage scheme to reduce the storage overhead. This

subroutine incurs more operational overhead than NDRV, and we lose the

ability to efficiently solve a sequence of related systems. However the

total storage requirements are usually significantly smaller (see Tables

4-6).

Finally, the third implementation, CDRV, attempts to balance the

design goals of speed, flexibility, and storage economy. It splits the

computation as in NDRV to allow flexibility and efficiency, but it uses

the compressed storage scheme as in TDRV to reduce storage overhead.

The rows and columns of the original matrix M can be reordered (e.g., to

reduce fillin or ensure numerical stability) before calling CDRV. If no

reordering is done, then set R(I)-C(I).IC(I) - I for Ii1,...,N. The

solution Z is returned in the original order. If the columns have been

reordered (i.e., C(I).NE.I for some I), then CDRV will call a subroutine

10 -

NROC which rearranges each row of JA and A, leaving the rows In the

orginal order, but placing the elements of each roy in increasing order

with respect to the new ordering. If PATH.NE. 1, then NROC Is assumed to

have been called already.

To solve a single system of equations, it suffices to use NROC (if

the columns of M have been rerrered), NSFC, and NNFC (PATH-1 in CDRV).

It should be pointed out here that a one line modification of NNFC can

be made to allow the solution of a single system without storing L:

simply comment out the line

L(IRL(l)) - - LKI,

as indicated in the code. This change will yield substantial storage

savings without the loss in efficiency incurred in TDRV. To solve

several systems in which the coefficient matrices have the same zero

structure, it suffices to use NROC, NSFC, and NNFC only once each for

the first system and then to use NNFC once for each subsequent system

(PATH-2 in CDRV). Finally, to solve several systems with the same

coefficient matrix but different right hand sides, it suffices to use

NROC, NSFC, and NNFC only once each for the first system, and then to

use NNSC once for each subsequent system (PATH-3 in CDRV).

The test driver (program NSTST) is used to verify the performance

of the package on a particular computer system, and may be used as a

guide to understanding how to use the package. It generates the

coefficient matrix for a nonsymmetric five-point difference equation on

a 3x3 grid and chooses the right-hand aide so that the solution vector x

is (1.2,3.4.5.b.7.8,9) (see Appendix 4). The grid points are given in

the natural row-by-row ordering. At each stage the values of all

relevant variables are printed out, and a sample output appears as

Appendix 5.

-12-

4. Performance

One of the most important aspects of any package is its performance

in terms of both the time and storage required to solve a typical

problem. In Tables 1-6, we present the time and storage required to

solve a nonsymmetric five-point difference equation on an nxn grid for

several values of n. These computations were performed in single

precision on an IBM 370/158 using the FORTRAN IV Level H Extended

compiler.

Table 1: Times for 5-point operator on a 20x2O mesh

Code INSF(C) INNF(C) Isec/* INNS(C) ITotal

4 --- -+-------------- - +----- ----

NDRV I0.213 I0.560 I9.978 I0.063 I0.773

I I I I I

----- ---
II I I I

CDRV I0.267 I0.790 I14.077 I0.087 I1.057

- ------------- +---------------------------------------

-13-

Table 2: Times for 5-point operator on a 30030 mesh

Code INSF(C) INNF(C) Isec/* NNS(C) ITotal

NDRV I0.583 I2.050 I9.503 I0.170 I2.633

TDRV II 14.046 I 3.030

CDRV I0.650 I2.810 I13.026 I0.233 I3.460

Table 3: Times for 5-point operator on a 40x40 mesh

Code INSF(C) INNF(C) Isecl* INNS(C) ITotal

NDRV I1.197 I5.430 I9.250 I0.347 I6.626

TDRV III13.134 I 7.710

CDRV I 1.243 I7.313 I12.459 I0.480 I8.556

-14 -

Table 4: Storage for S-point operator on a 20x20 mesh

I I II I I+ 1
Code IA/JA IL IJL IU IJU ITotal Mults.

--------------------- ------ ------ I------ ------ ------- I------

NDRV I1,920 I3,368 13,368 I3,368 I3,368 I15,47 I56,118

----- I-------------------------------- --------

TDRV I1,920 II 3,368 I1,889 I 7,660 I56,118

----- ----I -------- ------------------------ --------

CDRV I1,920 I3,368 I1,889 I3,368 I1,889 I13,716 I56,118

----- ----I -------- ------------------------ --------

Table 5: Storage for 5-point operator on a 30x30 mesh

Code III11+1
A/JA L JL U JU Total Mults.

----- ---------------- I------ I-------------- ---------

NDRV I4,380 I9,456 I9,456 I9,456 I9,456 I42,327 I215,708

----- ----I-- ------------------- -------- ---------

TDRV I4,380 II 9,456 I4,538 I19,397 I215,708

----- ----I-- --------------------------- ---------

CDRV I4,380 I9,456 I4,538 I9,456 I4,538 I35,190 I215,708

----- ----I-- ------------------- -------- ---------

+Total storage required by driver

-15 -

Table 6: Storage for 5-point operator on a 40x40 mesh

I I I I I +1
Code IA/JA I L IJL I U JU Tl otall Mults.

----- ----I----------- ------------------------ ---------

NDRV I7,840 I19,926 I19,926 I19,926 I19,926 I87,707 I586,970

-----------I----------- ------------------------ ---------

TDRV I7,840 Ij 19,926 I8,423 I37,952 I586,970

----------------------- ------------------------ ---------
CDRV I7,840 I19,926 I8,423 I19,926 18,423 I69,500 1586,970

----------------------- ------------------------ ---------

- 16-

REFERENCES

(1] A. Chang.

Application of sparse matrix methods in electric power system

analysis. In Sparse Matrix Proceedings, Report RAI, IBM Research.

R. A. Willoughby, editor, Yorktown Heights, New York. 1968.

[2] A. R. Curtis and J. K. Reid

The solution of large sparse unsymmetric systems of linear

equations. JIMA 8:344-353, 1971.

[3] S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman.

The Yale Sparse Matrix Package. I. Symmetric Problems.

Yale University, Department of Computer Science, Technical

Report #112, May 1977.

(4] S. C. Eisenstat, M. H. Schultz, and A. H. Sherman.

Considerations in the design of software for sparse Gaussian

elimination. In J. R. Bunch and D. J. Rose, editors, Sparse Matrix

Computations, Academic Press, 1976, pp. 263-273.

(5] S. C. Eisenstat and A. H. Sherman.

Efficient implementation of sparse nonsymmetric Gaussian elimination

without pivoting. In Proceedings of the SIGNUM Meeting on Software

for Partial Differential Equations, ACM SIGNUM Newsletter, December

1975, pp. 26-29.

-17-

(6] F. G. Gustavson.

Some basic techniques for solving sparse systems of linear

equations. In D. J. Rose and R. A. Willoughby, editors, Sparse

Matrices and Their Applications, Plenum Press, 1972, pp. 41-5 2.

(7] J. E. Key

Computer Programs for Solution of Large, Sparse, Unsymmetric Systems

of Linear Equations. International Journal for Numerical Methods

in Engineering 6: 497-509, 1973.

[8] W. C. Rheinboldt and C. K. Mesztenyi.

Programs for the solution of large sparse matrix problems based

on the arc-graph structure. University of Maryland Computer

Science Technical Report TR-262, 1973.

(9] A. H. Sherman.

On the Efficient Solution of Sparse Systems of Linear and

Nonlinear Equations. Ph.D. dissertation, Department of Computer

Science, Yale University, 1975.

[10] A. H. Sherman.

Yale sparse matrix package user's guide. Lawrence Livermore

Laboratory Report UCID-30114, 1975.

C Appendix 1 7/31/77
C
C Subroutines for Solving Sparse Nonsymmetric Systems
C of Linear Equations (Uncompressed Pointer Storage)
C
C
C*** Subroutine NDRV

C*** Driver for subroutines for solving sparse nonsymmetric systems of

C linear equations (uncompressed pointer storage)
C

SUBRIUTINE NDRV
* (N, R,C,IC, IA,JA,A, B, Z, NSP,ISP,RSP,ESP, PATH, FLAG)

C
C PARAMETERS
C Class abbreviations are --
C n - INTEGER variable

C f - REAL variable
C v - supplies a VALUE to the driver

C r - returns a RESULT from the driver

C i - used INTERNALly by the driver
C a - ARRAY
C
C Class I Parameter
C - -----------
C I
C The nonzero entries of the coefficient matrix M are stored
C row-by-row in the array A. To identify the individual nonzero
C entries in each row, we need to know in which column each entry
C lies. The column indices which correspond to the nonzero entries
C of M are stored in the array JA; i.e., if A(K) - M(I,J), then
C JA(K) - J. In addition, we need to know where each row starts and

C how long it is. The index positions in JA and A where the rows of

C M begin are stored in the array IA; i.e., if M(IJ) is the first
C nonzero entry (stored) in the I-th row and A(K) = M(I,J), then

C IA(I) - K. Moreover, the index in JA and A of the first location

C following the last element in the last row is stored in IA(N+I).
C Thus, the number of entries in the I-th row is given by

C IA(I+I) - IA(I), the nonzero entries of the I-th row are stored

C consecutively in
C A(IA(l)), A(IA(I)+I) , A(IA(1+1)-l),

C and the corresponding column indices are stored consecutively in

C JA(IA(1)), JA(IA(I)+I) ... , JA(IA(I+I)-I).
C For example, the 5 by 5 matrix

C (1. 0. 2. 0. 0.)
C (0. 3. 0. 0. 0.)
C M (. 4. 5. 6. 0.)
C (0. 0. 0. 7. 0.)

C (0. 0. 0. 8. 9.)
C would be stored as
C 11l 2 3 4 5 6 7 8 9
C + 1 3 56 8
C ---------------------------------

C LAII 3 4 7 810
C JA l 3 2 2 3 4 4 4 5

C A I 1. 2. 3. 4. 5. 6. 7. 8. 9.
C
C nv I N - number of variables/equations.
C fva m A - nonzero entries of the coefficient matrix M, stored
C I by rows.

C i Size - number of nonzero entries in M.

C nva i IA - pointers to delimit the rows in A.

C Size - N+1.
C nva JA - column numbers corresponding to the elements uf A.
C Size - size of A.
C fva B - right-hand side b; B and Z can the same array.

C Size - N.
C fra Z - solution x; B and Z can be the same array.

C Size - N.
C
C The rows and columns of the original matrix N can be

C reordered (e.g., to reduce fillin or ensure numerical stability)
C before calling the driver. If no reordering is done, then set
C R(I) - C(I) - IC(I) - I for l-1....,N. The solution Z is returned
C in the original order.
C
C nva R - ordering of the rows of M.
C Size - N.
C nva C - ordering of the columns of M.
C Size - N.
C nva IC - inverse of the ordering of the columns of M; i.e..
C IC(C(1)) - I for I-I,...,N.
C Size - N.
C
C The solution of the system of linear equations is divided into
C three stages --
C NSF -- The matrix M is processed symbolically to determine where

C fillin will occur during the numeric factorization.
C NNF -- The matrix M is factored numerically into the product LDU
C of a unit lower triangular matrix L, a diagonal matrix D,
C and a unit upper triangular matrix U, and the system
C Mx - b is solved.
C NNS -- The linear system Mx - b is solved using the LDU
C factorization from NNF.
C For several systems whose coefficient ma~rices have the same
C nonzero structure, NSF need be done only once (for the first
C system); then NNF is done once for each additional system. For
C several systems with the same coefficient matrix, NSF and NNF need
C be done only once (for the first system); then NNS is done once

C for each additional right-hand side.
C
C nv PATH - path specification; values and their meanings are --
C I perform NSF and NNY.
C 2 perform NNF only (NSF is assumed to have been
C done in a manner compatible with the storage
C allocation used in the driver).
C 3 perform NNS only (NSF and NNF are assumed to
C have been done in a manner compatible with the

C storage allocation used in the driver).
C
C Various errors are detected by the driver and the individual

C subroutines.
C
C nr FLAG - error flag; values and their meanings are --

C 0 No Errors Detected
C N4K Null Row in A -- Row K
C 2N+K Duplicate Entry in A -- Row - K
C 3N+K Insufficient Storage in NSF -- Row - K
C 4N+l Insufficient Storage in NNF

C 5N+K Null Pivot -- Row K
C 6N+K Insufficient Storage in NSF -- Row - K

C I 7N+1 Insufficient Storage in NNF
C I a+K Zero Pivot -- Row - K
C I iON+l Insufficient Storage in NDRV

C I IIN+l Illegal PATH Specification
C
C Working storage is needed for the factored form of the matrix
C M plus various temporary vectors. The arrays ISP and RSP should be
C the same; integer storage is allocated from the beginning of ISP
C and real storage from the end of RSP.

C
C nv NSP - declared dimension of ISP and RSP; NSP generally must
C be larger than 5N+3 + 2K (where K - (number of

C nonzero entries in M)).
C nvira ISP - integer working storage divided up into various arrays
C needed by the subroutines; ISP and RSP should be
C the same array.
C Size - NSP.
C fvira RSP - real working storage divided up into various arrays

C needed by the subroutines; ISP and 1SF should be
C the same array.
C Size - NSP.

C nr ESP - if sufficient storage was available to perform the
C symbolic factorization (NSF), then ESP is set to the
C amount of excess storage provided (negative if

C insufficient storage was available to perform the
C numeric factorization (NNF)).
C

INTEGER R(I), C(I), IC(1), IA(1), JA(1), ISP(1), ESP,

PATH, FLAG, Q, IM, D, U, ROW, ThP, UAX
REAL A(1), B(I), Z(1), RSP(I)

C
IF (PATH.LT.1 .OR. PATH.GT.3) GO TO III

C ****** Initialize and divide up temporary storage *****************
IL - I
IU - IL + N+I
JL - IU + N+I
FLAG - 0

C
****** Call NSF if flag is set *

IF (PATH.GT.I) GO TO 2
1N - NSP - N
Q - IM - (N+I)
MAX - Q - JL
IF (MAX.LT.O) GO TO 110
JLKAX - MAX/2
JUTHP = JL + JLMAX
JUMAX - Q - JUTMP

CALL NSF
* (N, R, IC, IA, JA,

* ISP(IL), ISP(JL), JLMAX, ISP(IU), ISP(JUTMP), JUMAX,
* RSP(Q), RSP(IM), FLAG)

IF (FLAG.NE.0) GO TO 100

C***** Move JU next to JL *
JLMAX - ISP(IL+N)-I
JU - JL + JLMAX
JUHAX - ISP(IU4N)-I

IF (JUMAX.LE.0) GO TO 2
DO I J-I,JUMAX

1 ISP(JU+J-I) - ISP(JUTMP+J-1)

C
C ***** Call remaining subroutines *

2 JLMAX - ISP(IL+N)-I
JU - JL + JL4AX
JUKAX - ISP(IU+N)-I
L - JU + JUAX
LMAX - JLMAX
D - L + LMAX
U -D +N

ROW = NSP - N
TMP - ROW - N
UMAX -TMP- U
ESP - UMAX - JUMAX

C
IF (PATH.GT.2) GO TO 3
CALL NNF

* (N, R, C, IC, IA, JA, A, Z, B,
* ISP(IL), ISP(JL), RSP(L), LMAX, RSP(D),

ISP(IU), ISP(JU), RSP(U), LWAX,
* RSP(ROW), RSP(TMP), FLAG)

IF (FLAG.NE.0) GO TO 100

RETURN
C

3 CALL NNS
* (N, R, C,
* ISP(IL), ISP(JL), RSP(L), RSP(D),
* ISP(IU), ISP(JU), RSP(U),
* Z, B, RSP(THP))

RETURN
C
C ** ERROR: Error Detected in NSF, NNF, or NNS
100 RETURN

C ** ERROR: Insufficient Storage

110 FLAG - IO*N + I
RETURN

C ** ERROR: Illegal PATH Specification
ill FLAG - lI*N + I

RETURN
END

C
C --- -

C
C YALE SPARSE MATRIX PACKAGE - NONSYMMETRIC CODES
C SOLVING THE SYSTEM OF EQUATIONS Mx - b
C (UNCOMPRESSED POINTER STORAGE)

C
C I. SUBROUTINE NAMES
C Subroutine names are of the form Nxx where --
C (1) the first letter is N for nonsymmetric matrices;

C (2) the second letter is either S for symbolic processing or N
C for numeric processing;

C (3) the third letter is either F for factorization or S for

C solution.
C
C 11. CALLING SEQUENCES

C The coefficient matrix can be processed by an ordering routine
C (e.g., to reduce fillin or ensure numerical stability) before using

C the remaining subroutines. If no reordering is done, then set

C R(I) C C(I) - IC(l) - I for I-l,...,N. The calling sequence is --
C ((matrix ordering))

C NSF (symbolic factorization to determine where fillin will

C occur during numeric factorization)
C NNF (numeric factorization into product LDU of unit lower

C triangular matrix L, diagonal matrix D, and unit upper
C triangular matrix U, and solution of linear system)
C NNS (solution of linear system for additional right-hand
C side using LDU factorization from NNF)
C
C III. STORAGE OF SPARSE MATRICES
C The nonzero entries of the coefficient matrix M are stored
C row-by-row in the array A. To identify the individual nonzero
C entries in each row, we need to know in which column each entry
C lies. The column indices which correspond to the nonzero entries
C of M are stored in the array JA; i.e., if A(K) - M(I,J), then

C JA(K) - J. In addition, we need to know where each row starts and

C how long it is. The index positions in JA and A where the rows of
C H begin are stored in the array IA; i.e., if M(IJ) is the first

C nonzero entry (stored) in the I-th row and A(K) - M(IJ), then
C IA(I) = K. Moreover, the index in JA and A of the first location

C following the last element in the last row is stored in IA(N+I).
C Thus, the number of entries in the I-th row is given by

C IA(I+I) - IA(I), the nonzero entries of the I-th row are stored

C consecutively in

C A(IA(I)), A(IA(I)+I). A(IA(I+1)-I),
C and the corresponding column indices are stored consecutively in
C JA(IA(I)), JA(IA(I)+I), ..., JA(IA(I+I)-I).
C For example, the 5 by 5 matrix
C (1. 0. 2. 0. 0.)

C (0. 3. 0. 0. 0.)
C M-(0. 4. 5. 6. 0.)

C (0. 0. 0. 7. 0.)
C (0. 0. 0. 8. 9.)

C would be stored as
C 11 2 3 4 5 6 7 8 9
C ---+----------
C IA i 3 4 7 8 10
C JA 1 3 2 2 3 4 4 4 5
C A I 1. 2. 3. 4. 5. 6. 7. 8. 9.
C The strict triangular portions of the matrices L and U are

C stored in the same fashion using the arrays IL, JL, L and
C IU, JU, U respectively. The diagonal entries of L and U are

C assumed to be equal to one and are not stored. The array D
C contains the reciprocals of the diagonal entries of the matrix D.
C
C IV. ADDITIONAL STORAGE SAVINGS

C In NSF, R and IC can be the same array in the calling
C sequence if no reordering of the coefficient matrix has been done.

C In NNF, R, C and IC can all be the same array if no reordering
C has been done. If only the rows have been reordered, then C and IC
C can be the same array. If the row and column orderings are the
C same, then R and C can be the same array. Z and ROW can be the
C same array.
C In NNS, R and C can be the same array if no reordering has
C been done or if the row and column orderings are the same. Z and B
C can be the same array; however, then B will be destroyed.
C
C V. PARAMETERS
C Following is a list of parameters to the programs. Names are
C uniform among the various subroutines. Class abbreviations are --
C n - INTEGER variable
C f - REAL variable
C v - supplies a VALUE to a subroutine
C r - returns a RESULT from a subroutine

C i - used INTERNALly by a subroutine
C a - ARRAY
C
C Class I Parameter
C -- -----
C fva A - nonzero entries of the coefficient matrix M, stored
C by rows.
C Size - number of nonzero entries in M.
C fva B - right-hand side b.
C Size - N.
C nva C - ordering of the columns of M.
C Size - N.
C fvra D - reciprocals of the diagonal entries of the matrix D.
C Size - N.
C nr FLAG - error flag; values and their meanings are --

C 0 No Errors Detected
C N+K Null Row in A -- Row- K
C 2N+K Duplicate Entry in A -- Row - K

C 3N +K Insufficient Storage for JL -- Row - K
C 4N+l Insufficient Storage for L
C 5N+K Null Pivot -- Row - K

C 6N+K Insufficient Storage for JU -- Row - K
C 7N+I Insufficient Storage for U
C 8N+K Zero Pivot -- Row - K
C nva IA - pointers to delimit the rows in A.
C Size - N+I.

C nva IC - inverse of the ordering of the columns of N; i.e.,
C IC(C(I) - I for I-I,...N.
C Size - N.
C nvra IL - pointers to delimit the rows in L.

C Size - N+1.

C nvra IU - pointers to delimit the rows in U.
C Size - N+l.
C nva JA - column numbers corresponding to the elements of A.
C Size - size of A.
C nvra JL - column numbers corresponding to the elements of L.
C Size - JLMAX.
C nv JLMAX - declared dimension of JL; JLNAX must be larger than

C the number of nonzero entries in the strict lower
C triangle of M plus fillin (IL(N+I)-I after NSF).
C nvra JU - column numbers corresponding to the elements of U.
C Size - JUMAX.
C nv JUMAX - declared dimension of JU; JUMAX must be larger than
C the number of nonzero entries in the strict upper
C triangle of H plus fillin (IU(N+I)-l after NSF).
C fvra L - nonzero entries in the strict lower triangular portion
C of the matrix L, stored by rows.

C Size - LHAX
C nv LMAX - declared dimension of L; LMAX must be larger than
C the number of nonzero entries in the strict lower
C triangle of N plus fillin (IL(N+I)-l after NSF).
C nv N - number of variables/equations.
C nva R - ordering of the rows of M.

C Size - N.
C fvra U - nonzero entries in the strict upper triangular portion
C of the matrix U, stored by rows.

C Size - UMAX.
C nv UMAX - declared dimension of U; UMAX must be larger than
C the number of nonzero entries in the strict upper
C triangle of M plus fillin (IU(N+I)-l after NSF).
C fra Z - solution x.
C Size - N.
C
C
C

C
C*** Subroutine NSF
C*** Symbolic LDU-factorization of a nonsymmetric sparse matrix
C (uncompressed pointer storage)
C

SUBROUTINE NSF
(N, R,IC, IA,JA, IL,JL,JLMAX, IU,JU,JUMAX, Q, IM, FLAG)

C

C Input variables: N, R,IC, IA,JA, JLMAX, JUMAX.
C Output variables: IL,JL, IU,JU, FLAG.
C
C Parameters used internally:
C nia Q - suppose M' is the result of reordering M; if
C processing of the Kth row of M' (hence the Kth rows
C of L and U) is being done, then Q(J) is initially
C nonzero if M'(K,J) is nonzero; since values need
C not be stored, each entry points to the next
C nonzero; for example, if N-9 and the 5th row of
C M" is
C Ox xO xO xO,

C then Q will initially be
C a 3 5 a 8 a a 10 a 2 (a - arbitrary);
C Q(N+I) points to the first nonzero in the row and
C the last nonzero points to N+I; as the algorithm
C proceeds, other elements of Q are inserted in the
C list because of fillin.

C Size - N+l.
C nia IM - at each step in the factorization, I(1) is the last
C element in the Ith row of U which needs to be
C considered in computing fillin.
C Size - N.
C
C Internal variables--
C JLPTR - points to the last position used in JL.
C JUPTR - points to the last position used in JU.
C

INTEGER R1), IC(1), IA(1), JA(1), IL(1), JL(1),
* IU(I), JU(1), Q(1), I(1), FLAG, QM, VJ

C
C Initialize pointers *

JLPTR - 0
IL(l) - I
JUPTR = 0
IU(M) - I

C
C ****** For each row of L and U ************************************

DO 10 K-1,N
C***** Set Q to the reordered row of A *

Q(N+I) - N+I
JMIN - IA(R(K))
JMAX = IA(R(K)+1) - I
IF (JMIN.GT.JMAX) GO TO 101
DO 2 J-JMIN,JMAX

VJ - IC(JA(J))

(IM - N+l
I M - QM

(W4 - Q (M)
IF (QM.LT.VJ) GO TO I
IF (QM.EQ.VJ) GO TO 102
Q(M) -Vi
Q(VJ) - QM

2 CONTINUE

C
C ****** For each entry in the lower triangle ***********************

I - N+1
3 1 - Q(I)

IF (I.GE.K) GO TO 1
C ****** L(K,I) will be nonzero, so add it to JL *

JLPTR - JLPTR+I
IF (JLPTR.GT.JLMAX) GO TL 03
JL(JLPTR) - I

qM - I

C **** Inspect Ith row for fillin. adjust IM if possible ****
JMIN - IU(I)
JMAX - IM(l)
IF (JMIN.GT.JMAX) GO TO 6
DO 5 J-JMIN,JMAX

vJ - JU(J)
IF (VJ.EQ.K) IM(I) - J

4 M=QM
QM - Q(M)

IF (QM.LT.VJ) GO TO 4
IF (QM.EQ.VJ) GO TO 5

Q(M) - VJ
Q(VJ) - QM
QM - VJ

5 CONTINUE

6 GOTO 3
C

****** Check for null pivot *
7 IF (I.NE.K) GO TO 105

C ****** Remaining elements of Q define structure of U(K,) *********
8 I - Q(I)

IF (I.GT.N) GO TO 9
JUFTR - JUPTR+l
IF (JUPTR.GT.JUMAX) GO TO 106
JU(JUPTR) - I
GO TO 8

C ****** Get ready for next row
9 IK(K) = JUTR

IL(K+1) - JLPTR+l

10 IU(K+1) - JUPTR+l
C

FLAG - 0
RETURN

C
C ** ERROR: Null Row in A

101 FLAG - N + R(K)
RETURN

C ** ERROR: Duplicate Entry in A
102 FLAG - 2*N + R(K)

RETURN
C ** ERROR: Insufficient Storage for JL
103 FLAG - 3*N + K

RETURN
C ** ERROR: Null Pivot
105 FLAG - 5*N + K

RETURN
C ** ERROR: Insufficient Storage for JU
106 FLAG - 6*N + K

RETURN

END

C
C
C*** Subroutine NNF
C*** Numeric LDU-factorization of sparse nonsymmetric matrix and
C solution of system of linear equations (uncompressed pointer
C storage)
C

SUBROUTINE NNF
* (N, R,C,IC, IA,JA,A, Z, B, IL,JL,L,LMAX, D, IU,JU,U,UMAX,
* ROW, TIMP, FLAG)

C
C Input variables: N, R,C,IC, IA,JA,A, B, IL,JL,LMAX, IU,JU,UMAX
C Output variables: Z, L,D,U, FLAG
C
C Parameters used internally:
C fia I ROW - holds intermediate values in calculation of L, D, U.
C j Size - N.
C fia I TMP - holds new right-hand side b for solution of the
C I equation Ux - V.
C I Size - N.
C

INTEGER R(1), C(1), IC(I), IA(1), JA(1),
* IL(1), JL(I), LMAX, IU(1), JU(1), UMAX, FLAG

REAL A(l), Z(1), B(1), L(1), D(1), U(1), ROW(1), TMP(1), LI
C
C ****** Check storage **

IF (IL(N+1)-I .GT. UMAX) GO TO 104
IF (IU(N+i)- .GT. UMAX) GO TO 107

C
C ****** For each row ***

DO 10 K-1,N
C ****** Set the initial structure of ROW **** ******************

JMIN - IL(K)
JMAX - IL(K+l) - I
IF (JMIN.GT.JMAX) GO TO 2

C ****** If L(K,M) .NE. 0, ROW(M)-O **
DO I J-JMIN,JMAX

1 ROW(JL(J)) - 0
2 ROW(K) - 0

JMIN - IU(K)
JMAX = IU(K+I) - I
IF (JMIN.GT.JMAX) GO TO 4

C ****** If U(K,M) .NE. 0, ROW(M)-O ********************************
DO 3 J-JMIN,JMAX

3 ROW(JU(J)) - 0
4 JMIN - IA(R(K))

JMAX - IA(R(K)+I) - I
C Set ROW to Kth row of reordered A *************

DO 5 J-JMIN,JMAX
5 ROW(IC(JA(J))) - A(J)

C ****** Initialize SUM ***

SUM - B(R(K))

C
C ***** Assign the Kth row of L and adjust ROW, SUM *

IMIN = IL(K)

IMAX - IL(K+I) - I
IF (IMIN.GT.IMAX) GO TO 8
DO 7 I-IMINIMAX

LI - - ROW(JL(I))
C * If L is not required, then comment out the following line ,t

L(I) - - LI

SUM - SUM + LI * TMP(JL(I))
JMIN - IU(JL(I))
JMAX - IU(JL(I)+I) - I
IF (JMIN.GT.JMAX) GO TO 7
DO 6 J-JMIN,JMAX

6 ROW(JU(J)) - ROW(JU(J)) + LI * U(J)
7 CONTINUE

C
C ****** Assign diagonal D and Kth row of U, set TMP(K) **** *

8 IF (ROW(K).EQ.0) GO TO 108
DK = I / ROW(K)

D(K) - DK

TMP(K) - SUM * DK
JMIN - IU(K)
JMAX - IU(K+I) - I
IF (JMIN.GT.JMAX) GO TO 10
DO 9 J-JMIN,JMAX

9 U(J) - ROW(JU(J)) * DK

10 CONTINUE
C
C ****** Solve Ux - TMP by back substitution ***** * *

K-N

DO 13 I-1,N
SUM - TMP(K)
MIN - IU(K)
JMAX , IU(K+l) - I
IF (JMIN.GT.JMAX) GO TO 12
DO 11 J-JMIN,JMAX

11 SUM - SUM - U(J) * TMP(JU(J))
12 TMP(K) - SUM

Z(C(K)) = SUM
13 K K-I

C
FLAG - 0
RETURN

C

C ** ERROR: Insufficient Storage for L

104 FLAG - 4*N + 1
RETURN

C ** ERROR: Insufficient Storage for U

107 FLAG - 7*N + I
RETURN

C ** ERROR: Zero Pivot
108 FLAG - 8*N + K

RETURN
END

C
C --- -

C
C*** Subroutine NNS
C*** Numeric solution of a sparse nonsymmetric system of linear
C equations given LDU-factorization (uncompressed pointer storage)
C

SUBROUTINE NNS
* (N, R,C, IL,JL,L, D, IU,JU,U, Z, B, TMP)

C
C Input variables: N, R,C, IL,JL,L, D, IU,JU,U, B
C Output variables: Z
C
C Parameters used internally:
C fia ITMP - holds new right-hand side V for solution of the
C Iequation Ux -V.

C Size -N.
C

INTEGER R(l), CM1, IL(l), JL(l), IU(1), JU(1)
REAL L(I), D(l), U(1), Z(1), B(1), TMP(l)

C
C****** Solve LDy - b by forward substitution

DO 2 K-1,N
SUM -B(R(K))

JMIN =IL(K)

JMAX -IL(K+I) - 1
IF (JMIN.GT.JMAX) GO To 2
DO I J-JMIN,JMAX

I SUM -SUM - L(J) * TMP(JL(J))
2 TMP(K) -SUM * D(K)

C
C **** Solve Ux - y by back substitution *******~

K -N
DO 5 1-1,N

SUM -TMP(K)

JMIN - 1.(K)
JMAX -IU(K+l) - I
IF (JMIN.GT.JMAX) GO TO 4
DO 3 J-JMIN,JMAX

3 SUM -SUM - U(J) *TNP(JU(J))
4 TMP(K) -SUM

Z(C(K)) - SUM
5 K -K-1

RETURN
END

C Appendix 2 7/31/77
C
C Subroutines for Solving Sparse Nonsymmetric Systems
C of Linear Equations (Track Nonzeroes Dynamically)
C
C
C*** Subroutine TDRV

C*** Driver for subroutine for solving sparse nonsymetric systems of

C linear equations (track nonzeroes dynamically)
C

SUBROUTINE TDRV
C * (N, RIC, LA,JA,A, B, Z, NSPISP,RSP,ESP, FLAG)

C

C PARAMETERS
C Class abbreviations are --

C n - INTEGER variable
C f - SEAL variable
C v - supplies a VALUE to the driver
C r - returns a RESULT from the driver
C i - used INTERNALly by the driver

C a - ARRAY
C
C Class I Parameter
C ---- --. - -- - - -

C I
C The nonzero entries of the coefficient matrix H are stored

C row-by-row in the array A. To identify the individual nonzero
C entries in each row, we need to know in which column each entry
C lies. The column indices which correspond to the nonzero entries
C of M are stored in the array JA; i.e., If A(K) = M(I,J), then
C JA(K) - J. In addition, we need to know where each row starts and

C how long it is. The index positions in JA and A where the rows of
C H begin are stored in the array IA; i.e., if M(I,J) is the first
C nonzero entry (stored) in the I-th row and A(K) - M(I,J), then

C IA(I) = K. Moreover, the index in JA and A of the first location

C following the last element in the last row is stored in IA(N+I).

C Thus, the number of entries in the I-th row is given by
C IA(I+l) - IA(I), the nonzero entries of the I-th row are stored

C consecutively in
C A(IA(1)), A(IA(1)+I) , A(IA(I+I)-l),

C and the corresponding column indices are stored consecutively in

C JA(IA(I)), JA(IA(I)+I), JA(IA(I+1)-l).
C For example, the 5 by 5 matrix

C (1. 0. 2. 0. 0.)
C (0. 3. 0. 0. 0.)
C M =(. 4. 5. 6. 0.)
C (0. 0. 0. 7. 0.)

C (0. 0. 0. 8. 9.)
C would be stored as

C 11 2 3 4 5 6 7 8 9
C -------------------------

C IA I1 3 4 7 8 10
C JA I 3 2 2 3 4 4 4 5
C A I 1. 2. 3. 4. 5. 6. 7. 8. 9.
C
C nv I N - number of variables/equations.
C fva I A - nonzero entries of the coefficient matrix M, stored

C I by rows.
C I Size - number of nonzero entries in M.
C nva IA - pointers to delimit the rows in A.

C Size = N+I.
C nva JA - column numbers corresponding to the elements of A.
C Size - size of A.
C fva B - right-hand side b; B and Z can the same array.
C Size - N. I
C fra Z - solution x; B and Z can be the same array.
C Size - N.

C
C The rows and columns of the original matrix M can be
C reordered (e.g.. to reduce fillin or ensure numerical stability)
C before calling the driver. If no reordering is done, then set
C R(I) - C(I) - IC(1) - I for I-=I....N. The solution Z is returned

C in the original order.
C
C nva R - ordering of the rows of M.
C Size - N.
C nva IC - inverse of the ordering of the columns of M; i.e.,
C IC(C(I)) - I for I-I....,N, where C is the

C ordering of the columns of M.
C Size - N.
C
C Various errors are detected by the driver and the individual
C subroutines.

C
C nr FLAG - error flag; values and their meanings are --
C 0 No Errors Detected
C N+K Null Row in A -- Row - K

C 2N +K Duplicate Entry in A -- Row - K
C 5N+K Null Pivot -- Row - K
C 8N+K Zero Pivot -- Row - K

C 1ON+I Insufficient Storage in TDRV
C 12N+K Insufficient Storage in TRK
C
C Working storage is needed for the factored form of the matrix
C M plus various temporary vectors. The arrays ISP and RSP should be
C the same; integer storage is allocated from the beginning of ISP
C and real storage from the end of RSP.
C
C nv NSP - declared dimension of ISP and RSP; NSP generally must
C be larger than 6N+2 + 2*K (where K - (number of
C nonzero entries in the upper triangle of M)).
C nvira ISP - integer working storage divided up into various arrays
C needed by the subroutines; ISP and RSP should be
C the same array.

C Size - NSP.

C fvira RSP - real working storage divided up into various arrays
C needed by the subroutines; ISP and RSP should be
C the same array.
C Size - NSP.
C nr ESP - if NSP is sufficiently large to allocate space, then
C ESP is set to the amount of excess storage provided.
C

INTEGER R(I), IC(I), LA(i), JA(1), ISP(l), ESP, FLAG,
U, ROW, TMP, Q

REAL A(i), B(I), Z(l), RSP(I)

C
C *** Initialize and divide up temporary storage *

IJU - I
IU - IJU + N
Q - IU + N+I
IM - Q + N+l
JU - IM + N
U - JU
ROW - NSP - N
TMP - ROW - N
MAX - TMP - JU
IF (MAX.LT.0) GO TO 110

C
****** Call zero-tracking subroutine *

FLAG - 0

CALL TRK
* (N, R, IC, IA, JA, A, Z, B,

* ISP(IJU), ISP(JU), ISP(IU), RSP(U), MAX,
* ISP(Q), ISP(IM), RSP(ROW), RSP(TMP), FLAG, ESP)

IF (FLAG.NE.O) GO TO 100
RETURN

C
C ** ERROR: Error Detected in TRK

100 RETURN
C ** ERROR: Insufficient Storage

110 FLAG - 10N + I
RETURN
END

D
C -

C
C YALE SPARSE MATRIX PACKAGE - ZERO-TRACKING CODE

C SOLVING THE SYSTEM OF EQUATIONS Mx - b
C
C I. SUBROUTINE NANES
C TRK performs an LDU-decomposition of the matrix M, without
C storing L or D, and solves the linear system of equations.
C
C II. CALLING SEQUENCES
C The coefficient matrix can be processed by an ordering routine

C (e.g., to reduce fillin or ensure numerical stability) before using
C the remaining subroutines. If no reordering is done, then set
C R(I) = C(I) - IC(I) - I for 1-1,...,N. The calling sequence is --

C ((matrix ordering))
C TRK (solution of linear system of equations)
C (If several systems with the same coefficient matrix but different
C right-hand sides or several systems whose coefficient matrices have
C the same nonzero structure are to be solved, and sufficient space
C is available, other subroutines should be used.)

C
C III. STORAGE OF SPARSE MATRICES
C The nonzero entries of the coefficient matrix H are stored
C row-by-row in the array A. To identify the individual nonzero
C entries in each row, we need to know in which column each entry
C lies. The column indices which correspond to the nonzero entries
C of M are stored in the array JA; i.e., if A(K) = M(I,J), then
C JA(K) - J. In addition, we need to know where each row starts and
C how long it is. The index positions in JA and A where the rows of
C M begin are stored in the array IA; i.e., if M(I,J) is the first

C nonzero entry (stored) in the I-th row and A(K) - M(I,J), then
C IA(I) - K. Moreover, the index in JA and A of the first location
C following the last element in the last row is stored in IA(N+I).

C Thus, the number of entries in the I-th row is given by
C IA(I+I) - IA(I), the nonzero entries of the I-th row are stored
C consecutively in

C A(IA(I)), A(IA(I)+I)...... A(IA(I+I)-1),
C and the corresponding column indices are stored consecutively in

C JA(IA(I)), JA(IA(I)+1) JA(IA(I+I)-1).
C For example, the 5 by 5 matrix
C (1. 0. 2. 0. 0.)

C (0. 3. 0. 0. 0.)
C M (. 4. 5. b. 0.)
C (0. 0. 0. 7. 0.)

C (0. 0. 0. 8. 9.)
C would be stored as
C 11 2 3 4 5 6 7 8 9

C -- _4------------------------------

C IA I 3 4 7 8 10
C JA I 3 2 2 3 4 4 4 5
C A 1 1. 2. 3. 4. 5. 6. 7. 8. 9.
C The strict upper triangular portion of the matrix U is stored
C in a similar fashion using the arrays IU, JU, U, except that an

C additional array IJU is used to compress storage of JU by allowing
C some of the column indices to be used for more than one row.
C IJU(K) points to the starting location in JU of entries for the Kth

C row. Compression in JU occurs in two ways. First, if a row I was
C merged into the current row K, and the number of elements merged in
C from (the tail portion of) row I is the same as the final length of

C row K, then the Kth row and the tail of row I are identical and
C IJU(K) may point to the start of the tail. Second, if some tail
C portion of the (K-I)st row is identical to the head of the Kth row,
C then IJU(K) may point to the start of that tail portion. For
C example, the nonzero structure of the strict upper triangular part
C of the matrix
C d0xxx

C OdOxx
C 00dx0
C O00dx

C O000d
C would be represented as
C 1123456

C --- ----- -

C IUI146788
C JU 13454
C IJU 1 243
C
C IV. ADDITIONAL STORAGE SAVINGS
C JU and U should be the same array. TRK fills 31 from the
C beginning of the array and U from the end of the array.
C R and IC can be the same array in the calling sequence if no
C reordering of the coefficient matrix has been done. Z and ROW can
C be the same array.

C
C V. PARAMETERS
C Following is a list of parameters to TRK. Class abbreviations

C are --

C n - INTEGER variable
C f - REAL variable
C v - supplies a VALUE to a subroutine
C r - returns a RESULT from a subroutine
C i - used INTERNALly by a subroutine

C a-ARRAY
C
C Class I Parameter
C --------
C fva A - nonzero entries of the coefficient matrix M, stored
C by rows.

C Size - number of nonzero entries in M.
C fva B - right-hand side b.

C Size - N.
C nr ESP - if enough storage was provided for J3 and U, then ESP
C is set to amount of excess storage provided.
C nr FLAG - error flag; values and their meanings are --
C 0 No Errors Detected
C N+K Null Row in A -- Row - K

C 2N4K Duplicate Entry in A -- Row - K
C 5N+K Null Pivot -- Row - K

C 8N+K Zero Pivot -- Row - K
C 12N+K Insufficient Storage for 31/U -- Row - K
C nva IA - pointers to delimit the rows in A.

C Size - N+1.
C nva IC - inverse of the ordering of the columns of M; i.e.,
C IC(C(l)) - I for 1-1,...N, where C is the

C ordering of the columns of M.
C Size - N.
C nia IJU - pointers to the first element in each row in JU, used
C to compress storage in JU.
C Size - N.
C nia IU - pointers to delimit the rows in U.

C Size - N+I.
C nva JA - column numbers corresponding to the elements of A.
C Size - size of A.
C nia JU - column numbers corresponding to the elements of U;
C JU and U should be the same array.
C Size - MAX.
C nv MAX - declared dimension of JU and U; MAX must be larger
C than the size of U (the number of nonzero entries
C in the strict upper triangle of M plus fillin) plus
C the size of JU (the size of U minus compression).
C nv N - number of variables/equations.

C nva R - ordering of the rows of M.
C Size - N.
C fia U - nonzero entries in the strict upper triangular portion
C of U, stored by rows; JU and U should be the same
C array.
C Size - MAX.

C fra Z - solution x.
C Size - N.
C
C
C
C*** Subroutine TRK
C*** Numerical solution of sparse nonsymmetric system of linear
C equations (track zeroes dynamically)
C

SUBROUTINE TRK
* (N. R,IC, IA,JA,A, Z, B, IJU,JU,IU,U,MAX,
* Q, IM, ROW, TMP, FLAG, ESP)

C
C Input variables: N, R,IC, IA,JA,A, B, MAX
C Output variables: Z, FLAG

C
C Parameters used internally:
C nia Q - suppose M' is the result of reordering M; if
C processing of the Kth row of M' (hence the Kth rows
C of L and U) is being done, then Q(J) is initially
C nonzero if M'(K,J) is nonzero; since values need
C not be stored, each entry points to the next
C nonzero; for example, if N-9 and the 5th row of
C M" is
C OxxOxO OxO,

C then Q will initially be
C a 3 5 a 8 a a 10 a 2 (a - arbitrary);
C Q(N+l) points to the first nonzero in the row and
C the last nonzero points to N+1; as the algorithm
C proceeds, other elements of Q are inserted in the
C list because of fillin.
C Size - N+I.
C nia IN - at each step in the factorization, IM(1) is the last
C element of the Ith row of U which needs to be
C considered in computing fillin.
C Size - N.

C fia I ROW - holds intermediate values in calculation of U.
C I Size - N.
C fia [TMP - holds new right-hand side b for solution of the

C I equation Ux- b.

C I Size - N.
C

INTEGER R(1), IC(1), IA(l), JA(1),
IJU(1), JU(1), IU(1), Q(1), IM(1), FLAG, ESP, VJ, qM

REAL A(l), Z(1), B(1), U(M), ROW(1), TMP(l)
C
C ****** Initialize ***

JUMIN - I
JUMAX - 0
IU(1) - MAX

C
C ****** For each row

DO 20 K-1,N
C ***** Initialize Q and ROW to the Kth row of reordered A *

LUK - 0

Q(N+I) - N+I
JMIN - IA(R(K))

JMAX - IA(R(K)+I) - I
IF (JMIN.GT.JMAX) GO TO 101
DO 2 J-JMIN,JMAX

VJ - IC(JA(J))
Q4 - N+I

1 M- QM
QM - Q(M)
IF (QM.LT.VJ) GO TO 1
IF (QM.EQ.VJ) GO TO 102
LUK - LUK+1
Q(M) = Vi
Q(VJ) = QM
ROW(VJ) - A(J)

2 CONTINUE
C
C ****** Link through Q ***

LMAX - 0
IJU(K) = JUAX
I - N+1

3 I - Q(I)
LUK - LUK-1

IF (I.GE.K) GO TO 8
QM -I
JMIN = IJU(I)
J=AX - IM(I)

LUI - 0
IF (JMIN.GT.JMAX) GO TO 7

C ****** and find nonzero structure of Kth row of L and U ***********
DO 5 J-JMIN,JMAX

Vi - JU(J)
IF (VJ.GT.K) LUI - LUI+1

4 M-QM
14 - Q (M)
IF (QM.LT.VJ) GO TO 4
IF (QM.EQ.VJ) GO TO 5
LUK - LUK+l
Q(H) - Vo
Q(VJ) - QM
ROW(VJ) - 0
qM- VJ

5 CONTINUE

C ***** Adjust IJU and IM , ***** * i **
JTMP - JMAX - LUI
IF (LUI.LE.LMAX) GO TO 6
LMAX - LUI
IJU(K) - JTMP+1

6 IF (JTMP.LT.JMIN) GO TO 7

IF (JU(JTMP).EQ.K) IM(I) - JTMP
7 GOTO 3

C
C See if JU storage can be compressed **************

8 IF (I.NE.K) GO TO 105
IF (LUK. EQ.IMAX) GO TO 14

IF (JUMIN.GT.JUMAX) GO TO 12

I - Q(K)

DO 9 JMIN-JUMIN,JUMAX
IF (JU(JMIN)-I) 9, 10, 12

9 CONTINUE
GO TO 12

10 IJU(K) - JMIN
DO 11 J-JMIN,JUMAX

IF (JU(J).NE.I) GO TO 12
I - Q(I)
IF (I.GT.N) GO TO 14

11 CONTINUE
JUMAX - JMIN - I

C ****** Store pointers in JU *
12 JUMIN = JUMAX + 1

JUMAX - JUMAX + LUK
IF (JUMAX.GT.IU(K)) GO TO 112
I K
DO 13 J=JUMIN,JUMAX

i = Q(I)
13 JU(J) = I

IJU(K) - JUMIN
14 IU(K+I) - IU(K) - LUK

IF (JUMAX.GT.IU(K+I)) GO TO 112
IM(K) - IJU(K) + LUK - 1

C
C ****** Calculate numerical values for Kth row *

SUM - B(R(K))
I - N+1

15 I = Q(I)
IF (I.GE.K) GO TO 18
AKI - - ROW(I)
SUM = SUM + AKI * TMP(I)
JMIN - IU(I+1) + I
MAX - IU(I)
IF (JMIN.GT.JMAX) GO TO 17
MU - IJU(I) - JMIN
DO 16 J-JMIN,JMAX

16 ROW(JU(MU+J)) = ROW(JU(MU+J)) + AKI * U(J)
17 GO TO 15

C **** Store values in TMP and U ********** ******************
18 IF (ROW(K).EQ.0) GO TO 108

DK - I / ROW(K)
TMP(K) - SUM * DK
JMIN - IU(K+I) + 1
JMAX - IU(K)

IF (JMIN.GT.JMAX) GO TO 20

MU - IJU(K) - JMIN
DO 19 J-JMIN,JMAX

19 U(J) - ROW(JU(MU+J)) * DK
20 CONTINUE

ESP - IU(N+I) - JUMAX
C
C ****** Solve Ux - TMP by back substitution ** **

K-N

DO 23 II,N
SUM - TMP(K)
JMIN - IU(K+I) + I
,MAX - IU(K)
IF (JMIN.GT.JMAX) GO TO 22
MU - IJU(K) - JMIN
DO 21 J-JMIN,JMAX

21 SUM - SUM - U(J) * TMP(JU(MU+J))
22 TMP(K) - SUM
23 K - K-I

DO 24 K-1,N
24 Z(K) - TMP(IC(K))

C
FLAG - 0
RETURN

C
C ** ERROR: Null Row in A

101 FLAG - N + R(K)
RETURN

C ** ERROR: Duplicate Entry in A
102 FLAG - 2*N + R(K)

•RETURN

C ** ERROR: Null Pivot
105 FLAG - 5*N + K

RETURN
C ** ERROR: Zero Pivot

108 FLAG - 8*N + K

RETURN
C ** ERROR: Insufficient Storage for JU and U

112 FLAG - 12*N + K
RETURN
END

C Appendix 3 7/31/77
C
C Subroutines for Solving Sparse Nonsymmetric Systems

C of Linear Equations (Compressed Pointer Storage)
C
C
C*** Subroutine CDRV
C*** Driver for subroutines for solving sparse nonsymmetric systems of
C linear equations (compressed pointer storage)

C
SUBROUTINE CDRV

* (N, R,C,IC, IA.JAA, B, Z, NSP,ISP.RSP,ESP, PATH, FLAG)
C
C PARAMETERS

C Class abbreviations are--
C n - INTEGER variable
C f - REAL variable
C v - supplies a VALUE to the driver

C r - returns a RESULT from the driver
C i - used INTERNALly by the driver
C a - ARRAY
C
C Class I Parameter
C ---- +-------
C I
C The nonzero entries of the coefficient matrix M are stored
C row-by-row in the array A. To identify the individual nonzero
C entries in each row, we need to know in which column each entry
C lies. The column indices which correspond to the nonzero entries
C of M are stored in the array JA; i.e., if A(K) - M(I,J), then
C JA(K) = J. In addition, we need to know where each row starts and
C how long it is. The index positions in JA and A where the row of

C M begin are stored in the array IA; i.e., if M(I,J) is the first
C nonzero entry (stored) in the I-th row and A(K) - M(I,J), then

C IA(I) - K. Moreover, the index in JA and A of the first location
C following the last element in the last row is stored in IA(N+1).
C Thus, the number of entries in the I-th row is given by

C IA(I+I) - IA(I), the nonzero entries of the I-th row are stored
C consecutively in
C A(IA(l)). A(IA(1)+I), ... , A(IA(I+1)-L),

C and the corresponding column indices are stored consecutively in
C JA(IA(I)), JA(IA(I)+I), ..., JA(IA(I+1)-l).
C For example, the 5 by 5 matrix
C (1. 0. 2. 0. 0.)
C (0. 3. 0. 0. 0.)
C M (. 4. 5. 6. 0.)
C (0. 0. 0. 7. 0.)
C (0. 0. 0. 8. 9.)
C would be stored as
C 1 2 3 4 5 6 7 8 9
C --- + ----------
C IA I 3 4 7 8 10

C JA IL 3 2 2 3 4 4 4 5
C A I 1. 2. 3. 4. 5. 6. 7. 8. 9.
C
C nv N - number of variables/equations.
C fva I A - nonzero entries of the coefficient matrix M, stored

C I by rows.
C I Size - number of nonzero entries in M.
C nva i IA - pointers to delimit the rows in A.

C Size - N+I.
C nva JA - column numbers corresponding to the elements of A.

C Size - size of A.
L, va B - right-hand side b; B and Z can the same array.
C Size - N.

C fra Z - solution x; B and Z can be the same array.
C Size - N.

C
C The rows and columns of the original matrix M can be
C reordered (e.g., to reduce fillin or ensure numerical stability)
C before calling the driver. If no reordering is done, then set

C R(I) - C(I) - IC(I) - I for I-i. N. The solution Z is returned
C in the original order.
C If the columns have been reordered (i.e., C(I).NE.I for some
C I), then the driver will call a subroutine (NROC) which rearranges
C each row of JA and A, leaving the rows in the original order, but
C placing the elements of each row in increasing order with respect
C to the new ordering. If PATH.NE.I, then NROC is assumed to have

C been called already.
C
C nva R - ordering of the rows of M.

C Size - N.
C nva C - ordering of the columns of M.
C Size - N.
C nva IC - inverse of the ordering of the columns of M; i.e.,
C IC(C(I)) - I for 1-i,....N.

C Size - N.
C
C The solution of the system of linear equations is divided into
C three stages--
C NSFC -- The matrix M is processed symbolically to determine where
C fillin will occur during the numeric factorization.
C NNFC -- The matrix M is factored numerically into the product LDU
C of a unit lower triangular matrix L, a diagonal matrix
C D, and a unit upper triangular matrix U, and the system

C Mx - b is solved.
Z NNSC -- The linear system Mx - b is solved using the LDU
C factorization from NNFC.
C For several systems whose coefficient matrices have the same
C nonzero structure, NSFC need be done only once (for the first
C system); then NNFC is done once for each additional system. For
C several systems with the same coefficient matrix, NSFC and NNFC
C need be done only once (for the first system); then NNSC is done

C once for each additional right-hand side.
C
C nv PATH - path specification; values and their meanings are --
C I perform NROC, NSFC, and NNFC.
C 2 perform NNFC only (NSFC is assumed to hi've been
C done in a manner compatible with the storage
C allocation used in the driver).
C 3 perform NNSC only (NSFC and NNFC are assumed to
C have been done in a manner compatible with the
C storage allocation used in the driver).

C
C Various errors are detected by the driver and the individual
C subroutines.
C
C nr FLAG - error flag; values and their meanings are --

C 0 No Errors Detected
C N+K Null Row in A -- Row K
C 2N+K Duplicate Entry in A -- Row - K
C 3N+K Insufficient Storage in NSFC -- Row - K

C 4N+l Insufficient Storage in NNFC
C 5N+K Null Pivot -- Row - K
C 6N+K Insufficient Storage in NSFC -- Row - K
C 7N+i Insufficient Storage in NNFC
C 8N+K Zero Pivot -- Row - K
C 1ON+ Insufficient Storage in CDRV
C I1N+1 Illegal PATH Specification
C
C Working storage is needed for the factored form of the matrix
C M plus various temporary vectors. The arrays ISP and RSP should be
C the same; integer storage is allocated from the beginning of ISP
C and real storage from the end of RSP.
C
C nv NSP - declared dimension of ISP and RSP; NSP generally must
C be larger than 8N+2 + 2K (where K - (number of

C nonzero entries in M)).
C nvira ISP - integer working storage divided up icto various arrays
C needed by the subroutines; ISP and RSP should be

C the same array.
C Size - NSP.
C fvira RSP - real working storage divided up into various arrays
C needed by the subroutines; ISP and RSP shouid be

C the same array.
C Size - NSP.
C nr ESP - if sufficient storage was available to perform the
C symbolic factorization (NSFC), then ESP is set to
C the amount of excess storage provided (negative if

C insufficient storage was available to perform the
C numeric factorization (NNFC)).
C

INTEGER R(1), C(1), IC(1), IA(l), JA(l), ISP(l), ESP, PATH,
FLAG, TMP, D, Q, U, RMN, ADD, UMAX

REAL A(1), B(1), Z(1), RSP(1)

C
IF(PATH.LE.0 .OR. PATH.GT.3) GO TO Ill

C****** Initialize and divide up temporary storage ******* * *
FLAG - 0
IL - 1
IJL - IL + N + I
IU - IJL + N
IJU - IU + N + 1
IRL - IJU + N
JRL - IRL + N
JL - JRL + N
IRA - NSP + 1 - N
D - IRA
JRA -D -N
TMP - JRA
Q -TMP -(N + I)
JRU -Q -N
IRU - JRU - N
IF(JL .GE. IRU) GO TO 110
IF(PATH .GT. 1) GO TO 10

C
C****** Reorder A if necessary, call NSFC if flag is set

RMN - IRU JL
ADD - RMN/2
JU - JL + ADD
JLMAX - ADD

JUMAX - RMN - ADD
DO 5 II-1,N

IF(C(II) .NE. II) GO To 6
5 CONTINUE

GO To 7
C

6 CALL NROC (N, IC, IA, JA, A, ISP(lL), RSP(Q), ISPUlU), FLAG)
LF(FLAG .NE. 0) GO To 100

C

7 CALL NSFC
* (N, R, IC, IA,JA, JLMAX,ISP(IL),ISP(JL),ISP(IJL), JUMAX,
* ISP(IU),ISP(JU),ISP(IJU), RSP(Q), RSP(IRA), RSP(JRA), Z,
* ISP(IRL),ISP(JRL), RSP(IRU),RSP(JRU), FLAG)

IF(FLAG .NE. 0) GO TO 100
C****** See if enough space remains, move JU next to JL

10 JLI4AX - ISP(IJL4N-1)
JUMAX - ISP(IJU+N-1)
114AX - ISP(IL4E) - 1

UMAXC - ISP(IU+) - I
IF(PATH .GT. 1) GO To 20
NEED -JLMAX + JUMAX + LMAX +UMAX

RMN =RMN + 3*N 4- 1
ESP -RI4N - NEE
IF(NEED .GT. RMN) Go TO 110
MUOLD - JU - I

J1J - JL + JLMAC - I

IF (JUMAX.LE.0) GO To 20
DO 15 II-1,JUMAX

15 ISP(JU+11) - ISP(JUOLD+11)
C****** Call remaining subroutines

20 JU - JL + JLMAX
L - JU + JUMAX
U - L + LMAX

C
IF(PATH .EQ. 3) GO TO 30
CALL NNFC
* (N, R, C, IC, IA,JA,A, LMAX,ISP(1.),IZr(JL),ISP(I).RSP(L),
* RSP(D), UMAX,ISP(TU),ISP(JU),ISP(IJU),RSP(U), Z. .- , 19
* RSP(TMP), ISP(IRL),ISP(JRL). FLAG)

IF(FLAG .NE. 0) GO TO 100
RETURN

30 CALL NNSC
* (N, R, C, ISP(lL),ISP(JL),ISP(IJL),RSP(L), RSP(D)q ISP(IU),
* ISP(JU).ISP(IJU),RSP(U), Z, B, RSP(TMP))

RETURN
C
C ** ERROR: Error Detected in NROC, NSFC, NNFC, or NNSC

100 RETURN
C ** ERROR: Insufficient Storage

110 FLAG - 10*N + 1
RETURN

C ** ERROR: Illegal PATH Specification
ill FLAG -11*N+ I

RETURN
END

C
C -

C
C YALE SPARSE MATRIX PACKAGE - NONSYMMETRIC CODES
C SOLVING THE SYSTEM OF EQUATIONS Mx - b
C
C I. SUBROUTINE NAMES
C Subroutine names and functions are --
C (1) NROC for reordering;

C (2) NSFC for symbolic factorization;
C (3) NNFC for numeric factorization and solution;
C (4) NNSC for solution.
C
C II. CALLING SEQUENCES
C The coefficient matrix can be processed by an ordering routine
C (e.g., to reduce fillin or ensure numerical stability) before using
C the remaining subroutines. If no reordering is done, then set
C R(I) - C(I) = IC(I) = I for I=I,...,N. If an ordering subroutine
C is used, then NROC should be used to reorder the coefficient matrix
C The calling sequence is --
C ((matrix ordering))
C (NROC (matrix reordering))
C NSFC (symbolic factorization to determine where fillin will
C occur during numeric factorization)
C NNFC (numeric factorization into product LDU of unit lower
C triangular matrix L, diagonal matrix D, and unit
C upper triangular matrix U, and solution of linear
C system)
C NNSC (solution of linear system for additional right-hand
C side using LDU factorization from NNFC)
C (If only one system of equations is to be solved, then the
C subroutine TRK should be used.)
C

C III. STORAGE OF SPARSE MATRICES
C The nonzero entries of the coefficient matrix M are stored
C row-by-row in the array A. To identify the individual nonzero
C entries in each row, we need to know in which column each entry
C lies. The column indices which correspond to the nonzero entries
C of M are stored in the array JA; i.e., if A(K) - M(I,J), then
C JA(K) - J. In addition, we need to know where each row starts and
C how long it is. The index positions in JA and A where the rows of
C M begin are stored in the array IA; i.e., if M(I,J) is the first
C (leftmost) entry in the I-th row and A(K) - M(I,J), then
C IA(I) - K. Moreover, the index in JA and A of the first location
C following the last element in the last row is stored in IA(N+I).
C Thus, the number of entries in the I-th row is given by
C IA(I+1) - IA(I). the nonzero entries of the I-th row are stored
C consecutively in
C A(IA(I)), A(IA(I)+I), ..., A(IA(I+1)-1),
C and the corresponding column indices are stored consecutively in
C JA(IA(I)), JA(IA(I)+I), JA(IA(I+I)-I).

C For example, the 5 by 5 matrix
C (1. 0. 2. 0. 0.)
C (0. 3. 0. 0. 0.)
C M - (0. 4. 5. 6. 0.)
C (0. 0. 0. 7. 0.)
C (0. 0. 0. 8. 9.)
C would be stored as
C 1 1 2 3 4 5 6 7 8 9
C 11 3 56 8
C ----4--------------------------
C IAI 1 3 4 7 810
C JA l 3 2 2 3 4 4 4 5
C A I I . 1 , . . A. 7. R. Q.

C The strict upper (lower) triangular portion of the matrix
C U (L) is stored in a similar fashion using the arrays IU. JU, U
C (IL, JL, L) except that an additional array IJU (IJL) is used to

C compress storage of JU (JL) by allowing some of the column (row)
C indices to used for more than one row (column) (n.b., L is stored

C by columns). IJU(K) (IJL(K)) points to the starting location in
C J (JL) of entries for the Kth row (column). Compression in JO
C (JL) occurs in two ways. First, if a row (column) I was merged

C into the current row (column) K, and the number of elements merged
C in from (the tail portion of) row (column) I is the same as the
C final length of row (column) K, then the Kth row (column) and the
C tail of row (column) I are identical and IJU(K) (IJL(K)) may point
C to the start of the tail. Second, if some tail portion of the
C (K-1)st row (column) is identical to the head of the Kth row

C (column), then IJJ(K) (IJL(K)) may point to the start of that tail
C portion. For example, the nonzero structure of the strict upper
C triangular part of the matrix

C d0xxx
C OdOxx
C OOdxO

C O00dx
C O000d
C would be represented as
C 1123456

C ----------------
C IU 1 46788

C JUI3454
C IJU 1243
C The diagonal entries of L and U are assumed to be equal to one and
C are not stored. The array D contains the reciprocals of the

C diagonal entries of the matrix D.
C
C IV. ADDITIONAL STORAGE SAVINGS
C In NSFC, R and IC can be the same array in the calling
C sequence if no reordering of the coefficient matrix has been done.

C In NNFC, Z and ROW can be the same array. R, C and IC can all
C be the same array if no reordering has been done. If only the
C rows have been reordered, then C and IC can be the same array.

C If the row and column orderings are the same, then R and C can be
C the same array.
C In NNSC, R and C can be the same array if no reordering has
C been done or if the row and column orderings are the same. Z and B

C can be the same array; however, then B will be destroyed.
C
C V. PARAMETERS
C Following is a list of parameters to the programs. Names are
C uniform among the various subroutines. Class abbreviations are --
C n - INTEGER variable

C f - REAL variable
C v - supplies a VALUE to a subroutine

C r - returns a RESULT from a subroutine
C i - used INTERNALly by a subroutine
C a - ARRAY

C
C Class I Parameter
C - - ----------
C fva A - nonzero entries of the coefficient matrix M, stored

C I by rows.

C I Size - number of nonzero entries in M.

C fva B - right-hand side b.
C Size - N.
C nva C - ordering of the columns of M.
C Size - N.
C fvra D - reciprocals of the diagonal entries of the matrix D.
C Size - N.

C nr FLAG - error flag; values and tneir meanings are --
C 0 No Errors Detected
C "N+K Null Row in A -- Row- K

C 2N44K Duplicate Entry in A -- Row - K
C 3N+K Insufficient Storage for JL -- Row - K
C 4N+1 Insufficient Storage for L

C 5N+K Null Pivot -- Row - K
C 6N4K Insufficient Storage for JU -- Row - K

C 7N+l Insufficient Storage for U

C 8N+K Zero Pivot -- Row - K
C nva IA - pointers to delimit the rows of A.
C Size - N+I.
C nvra IJL - pointers to the first element in each column in JL,
C used to compress storage in JL.
C Size - N.
C nvra IJU - pointers to the first element in each row in JU, used
C to compress storage in JU.
C Size - N.

C nvra IL - pointers to delimit the columns of L.
C Size - N+I.

C nvra IU - pointers to delimit the rows of U.

C Size - N+I.
C nva JA - column numbers corresponding to the elements of A.
C Size - size of A.

C nvra JL - row numbers corr~sponding to the elements of L.
C Size - JLMAX.
C nv JLMAX - declared dimension of JL; JLNAX must be larger than
C the number of nonzeros in the strict lower triangle
C of M plus fillin minus compression.

C nvra JU - column numbers corresponding to the elements of U.
L Size - JUMAX.
C nv JUMAX - declared dimension of JU; JUHIAX must be larger than
C the number of nonzeros in the strict upper triangle
C of M plus fitlin minus compression.
C fvra L - nonzero entries in the strict lower triangular portion
C of the matrix L, stored by columns.
C Size - LMAX.
C nv LMAX - declared dimension of L; LMAX must be larger than
C the number of nonzeros in the strict lower triangle
C of M plus fillin (IL(N+l)-l after NSFC).
C nv N - number of variables/equations.
C nva R - ordering of the rcws of M.

C Size - N.
C fvra U - nonzero entries in the strict upper triangular portion
C of the matrix U, stored by rows.

C Size - UMAX.
C nv UMAX - declared dimension of U; UMAX must be larger than
C the number of nonzeros in the strict upper triangle
C of M plus fillin (IU(N+1)-l after NSFC).
C fra Z - solution x.
C Size - N.
C
C

C
C*** Subroutine NROC
C*** Reorders rows of A, leaving row order unchanged
C

SUBROUTINE NROC (N, IC, IA, JA, A, JAR, AR, P. FLAG)

C
C Input parameters: N, IC, IA, JA, A
C Output parameters: JA, A, FLAG
C
C Parameters used internally:
C nia P - at the Kth step, P is a linked list of the reordered
C column indices of the Kth row of A; P(N+I) points
C to the first entry in the list.

C Size - N+1.
C nia JAR - at the Kth step,JAR contains the elements of the
C reordered column indices of A.
C Size - N.
C fia AR - at the Kth step, AR contains the elements of the
C reordered row of A.
C Size - N.
C

INTEGER IC(1), IA(1), JA(1), JAR(1), P(1), FLAG
REAL A(1), AR(I)

C
C ****** For each nonempty row

DO 5 K-l,N
JMIN - IA(K)

J AX - LA(K+1) - I
IF(JMIN .GT. .AAX) GO TO 5
P(N+I) - N + I

C ****** Insert each element in the list *********************

DO 3 J-JMINJMAX
NEWJ - IC(JA(J))

I -N + I
1 IF(P(l) .GE. NEWJ) GO TO 2

I - P(I)

GO TO I
2 IF(P(I) .EQ. NEWJ) GO TO 102

P(NEWJ) - P(I)
P(I) - NEWJ
JAR(NEWJ) - JA(J)
AR(NEWJ) - A(J)

3 CONTINUE
C ***** Replace old row in JA and A ********************

I -N + I
DO 4 J-JMIN,JMAX

I - P(I)
JA(J) - JAR(I)

4 A(J) - AR(1)
5 CONTINUE

FLAG - 0
RETURN

C
C ** ERROR: Duplicate entry in A

102 FLAG - N + K
RETURN
END

C

C -

C
C*** Subroutine NSFC
C*** Symbolic LDU-factorization of nonsymmetric sparse matrix
C (compressed pointer storage)
C

SUBROUTINE NSFC
* (N, R, IC, IA.JA, JLMAX,IL,JL,IJL, JUMAX,IU,JUIJU, Q, IRA,
* JRA, IRAC, IRL,JRL, IRU,JRU, FLAG)

C
C Input variables: N, R, IC, IA, JA, JLMAX, JUMAX.
C Output variables: IL, JL, IJL, IU, JU, IJU. FLAG.
C
C Parameters used internally:
C nia Q - Suppose M' is the result of reordering M. If
C processing of the Ith row of M' (hence the Ith
C row of U) is being done, Q(J) is initially
C nonzero if M'(I,J) is nonzero (J.GE.I). Since
C values need not be stored, each entry points to the

C next nonzero and Q(N+I) points to the first. N+I
C indicates the end of the list. For example, if N-9

C and the 5th row of M' is
C OxxO xOOxO
C then Q will initially be
C a a a a 8 a a 10 5 (a - arbitrary).

C As the algorithm proceeds, other elements of Q
C are inserted in the list because of fillin.
C Q is used in an analogous manner to compute the
C Ith column of L.

C Size - N+1.
C nia IRA, - vectors used to find the columns of M. At the Kth
C nia JRA, step of the factotization, IRAC(K) points to the
C nia IRAC head of a linked list in JRA of row indices I
C such that I .GE. K and M(IK) is nonzero. Zero

C indicates the end of the list. IRA(I) (I.GE.K)
C points to the smallest J such that J .GE. K and
C M(1,J) is nonzero.
C Size of each = N.

C nia IRL, - vectors used to find the rows of L. At the Kth step

C nia JRL of the factorization, JRL(K) points to the head
C of a linked list in JRL ot column indices J
C such J .LT. K and L(K,J) is nonzero. Zero
C indicates the end of the list. IRL(J) (J.LT.K)
C points to the smallest I such that I .GE. K and
C L(IJ) is nonzero.
C Size of each = N.
C nia IRU, - vectors used in a manner analogous to IRL and JRL
C nia JkU to find the columns of U.
C Size of each - N.
C
C Internal variab'es:
C JLPTR - points to the last position ised in IL.
C JUPTR - points to the last position used in IL.
C JMIN.JMAX - are the indices in A or U of the first and last
C elements to be examined in a given row.
C For example, JMIN-IA(K), tMAX-IA(K+I)-l.
C

INTEGER CEND, OM, REND, RU. VJ
INTEGER IA(l), JA(M), IRAi), JRA(, Ili), JLM), IJL(I)
INTEGER IU(i), JU(I), IJU(l). IRL(I , jRI.(l), IRU(1), JRUI)
INTEGLR R(l), IC(), Q(1). [RAC(I) i:LA(;

C
C ****** Initialize pointers *************

NPI - N + I
JLMIN - I
JLPTR - 0
IL(1) - I
JUMIN - I
JUPTR - 0
I(1) - I
DO I K-I,N

IRAC(K) - 0
JRA(K) - 0
JRL(K) - 0

1 JRU(K) - 0
C ****** Initialize column pointers for A *

DO 2 K-1,N
RK - R(K)
IAK - IA(RK)
IF (IAK .GE. IA(RK+I)) GO TO 101
JAIAK - IC(JA(IAK))
IF (JAIAK .GT. K) GO TO 105

JRA(K) - IRAC(JAIAK)
IRAC(JAIAK) - K

2 IRA(K) - IAK

C ****** For each column of L and row of U **************************
DO 41 K-IN

C
C ***** Initialize Q for computing Kth column of L *

Q(NPI) - NPI
LUK--1

C****** by filling in Kth column of A *
VJ - IRAC(K)
IF (VJ .EQ. 0) GO TO 5

3 QM - NP1
4 M =QM

= Q)
IF (QM .LT. VJ) GO TO 4

IF (QM .EQ. VJ) GO TO 102
LUK - LUK + I
Q(M) = vi
Q(VJ) a QH
VJ - JRA(VJ)
IF (VJ .NE. 0) GO TO 3

C ****** Link through JRU ***
5 LASTID - 0

LASTI - 0
IJL(K) - JLPTR
I -K

6 I - JRU(I)
IF (I .EQ. 0) GO TO 10

- NPl
JMIN - IRL(I)
JMAX - IJL(I) + IL(I+1) - IL(I) - 1
LONG - JMAX - JMIN
JTMP - JL(,IMIN)
IF (JTMP .NE. K) LONG - LONG + I
IF (JTMP .EQ. K) R(I) - -R(I)
IF (LASTID .GE. LONG) GO TO 7
LASTI - I
LASTID - LONG

7 IF (LONG .LE. 0) GO TO 6

C And merge the corresponding columns into the Kth column ****
DO 9 J-JMINJMAX

VJ = JL(J)

8 - QM
q1 - Q(M)
IF (QM .LT. VJ) GO TO 8
IF (QMl .EQ. VJ) GO TO 9
LUK = LUK + I
Q(M) - Vi
Q(VJ) - QM
QM - Vi

9 CONTINUE
GO TO 6

C LASTI is the longest column merged into the Kth ********
C **** See if it equals the entire Kth column *

10 QM - Q(NP1)
IF (QM .NE. K) GO TO 105
IF (LUK .EQ. 0) GO TO 17

IF (LASTID .NE. LUK) GO TO 11
C ****** If so, JL can be compressed **************** *

IRLL - IRL(LASTI)

IJL(K) - IRLL + 1
IF (JL(IRLL) .NE. K) IJL(K) - IJL(K) - I
GO TO 17

C ****** If not, see if Kth column can overlap the previous one ****
II IF (JLMIN .GT. JLPTR) GO TO 15

QM = Q(QM)
DO 12 J-JLMIN,JLPTR

IF (JL(J) - QM) 12, 13, 15

12 CONTINUE
GO TO 15

13 IJL(K) - J
DO 14 I-J,JLPTR

IF (JL(I) .NE. QM) GO TO 15

- Q(QM)
IF (QM .GT. N) GO TO 17

14 CONTINUE

JLPTR - J - I
C ****** Move column indices from Q to JL, update vectors *

15 JLMIN JLPTR + 1
IJL(K) - JLMIN
IF (LUK .EQ. 0) GO TO 17
JLPTR - JLPTR + LUK

IF (JLPTR .GT. JLMAX) GO TO 103
Q4 - Q(NPI)
DO 16 J-JLMIN,JLPTR

(S4 - Q (QK)
16 JL(J) - QM
17 IRL(K) - IJL(K)

IL(K+1) - IL(K) + LUK
C

C * Initialize Q for computing Kth row of U ********************
Q(N1I) - NPI
LUK - -1

C***** by filling in Kth row of reordered A ***********************
RK - R(K)
JMIN - IRA(K)

JMAX - IA(RK+I) - 1
IF (JMIN .GT. JMAX) GO TO 20
DO 19 J-JMIN,JMAX

VJ - IC(JA(J))
Q= NPI

18 M -QM
QM - Q(M)
IF (QM .LT. VJ) GO TO 18
IF (QM .EQ. VJ) GO TO 102

LUK - LUK + 1
Q(M) - Vi
Q(VJ) = QM

19 CONTINUE
C ****** Link through JRL, ***

20 LASTID - 0
LASTI - 0
IJU(K) - JUPTR
I=K

Ii = JRL(K)

21 I , II
IF (I .EQ. 0) GO TO 26
I1 - JRL(I)
QH = NPI
JMIN - IRU(I)
JMAX = IJU(I) + IU(I+1) - IU(I) - I
LONG = JMAX - JMIN
JTMP - JU(JMIN)
IF (JTMP .EQ. K) GO TO 22

C**** Update IRL and JRL, **************************************
LONG = LONG + 1
CEND - IJL(I) + IL(I+1) - IL(1)
IRL(I) = IRL(I) + I
IF (IRL(I) .GE. CEND) GO TO 22

J - JL(IRL(I))
JRL(I) - JRL(J)

JRL(J) - I
22 IF (LASTID .GE. LONG) GO TO 23

LASTI = I
LASTID - LONG

23 IF (LONG oLE. 0) GO TO 21
C ****** And merge the corresponding rows into the Kth row

DO 25 J=JMIN,JMAX
Vi - JU(J)

24 M = QM
(i - Q (M)
IF (QM .LT. VJ) GO TO 24
IF (QM .EQ. VJ) GO TO 25

LUK - LUK + I
Q(M) = Vi
Q(VJ) = QM
Q1 = Va

25 CONTINUE

GO TO 21
C ****** Update JRL(K) and IRL(K) ***********************h*****

26 IF (IL(K+l) .LE. IL(K)) GO TO 27
J - JL(IRL(K))
JRL(K) = JRL(J)
JRL(J) - K

C * LASTI is the longest row merged into the Kth *
C * See if it equals the entire Kth row *

27 QM - Q(NPI)
IF (QM .NE. K) GO TO 105
IF (LUK .EQ. 0) GO TO 34

IF (LASTID .NE. LUK) GO TO 28
C * If so, JU can be compressed *******************************

IRUL = IRU(LASTI)
IJU(K) - IRUL + I
IF (JU(IRUL) .NE. K) IJU(K) - IJU(K) - I
GO TO 34

C If not, see if Kth row can overlap the previous one
28 IF (JUMIN .GT. JUPIR) GO TO 32

QK - Q(QM)

DO 29 J-JUMIN,JUPTR
IF (JU(J) - QM) 29, 30, 32

29 CONTINUE
GO TO 32

30 IJU(K) - J
DO 31 I-J,JUPTR

IF (JU(1) .NE. QM) GO TO 32
(1 - Q(QM)
IF (QM .GT. N) GO TO 34

31 CONTINUE
JUPTR - J - I

C ****** Move row indices from Q to JU, update vectors *
32 JUMIN - JUPTR + I

IJU(K) - JUMIN
IF (LUK .EQ. 0) GO TO 34
JUPTR - JUPTR + LUK
IF (JUPTR .GT. JUMAX) GO TO 106

QM - Q(NPI)
DO 33 J-JUMIN,JUPTR

W - Q (QM)
33 JU(J) = QM
34 IRU(K) - IJU(K)

IU(K+I) - IU(K) + LUK
C
C ****** Update IRU, JRU *

I-K
35 II - JRU(I)

IF (R(I) .LT. 0) GO TO 36
REND = IJU(I) + IU(I-+) - I(I)
IF (IRU(I) .GE. REND) GO TO 37

J = JU(IRU(I))

JRU(I) - JRU(J)
JRU(J) m I
GO TO 37

36 R(1) = -R(I)
37 1=11 -

IF (I .EQ. 0) GO TO 38
IRU(I) - IRU(I) + 1
GO TO 35

C
C ~** Update IRA, JRA, IRAC

38 1 - IRAC(K)
IF (I .EQ. 0) GO TO 41

39 II - JRA(I)
IRA(l) - IRA(I) + 1

IF (IRLA(I) .GE. IA(R(I)+l)) GO To 40
IRLAI - IRA(I)
JAIRAI - IC(JA(IRAI))
IF (JAIRAI .GT. I) GO To 40
JRA(I) - IRAC(JAIRAI)
IRAC(JAIRAI) =I

40 1-I
IF (I .NE. 0) GO TO 39

41 CONTINUE
C

IJL(N) - JLPTR
IJU.(N) - JUPTR
FLAG - 0
RETURN

C
C ** ERROR: Null Row in A
101 FLAG -N +RK

RETURN
C ** ERROR: Duplicate entry in A
102 FLAG -2*N + R

RETURN
C ** ERROR: Insufficient Storage for it
103 FLAG - 3*N + K

RETURN
C ** ERROR: Null pivot
105 FLAG -5*N+ K

RETURN
C ** ERROR: Insufficient Storage for iii
106 FLAG - 6*N + K

RETURN
END

C
C -

C
C*** Subroutine NNFC
C*** Numerical LDU-factorization of sparse nonsymmetric matrix and
C solution of system of linear equations (compressed pointer
C storage)
C

SUBROUTINE NNFC
* (N, R, C, IC, IA,JAA, LMAX,IL,JL,IJL,L, D, MAX,IUJU,IJU,
* U, Z. B, ROW, TMP, IRL,JRL, FLAG)

C
C Input variables: N, R, C, IC, IA, JA, A, B, IL, JL, IJL,
C LMAX, IU, JU, 1311, UMAX
C output variables: Z, L, D, U, FLAG

C
C Parameters used internally:
C nia IRL, - vectors used to find the rows of L. At the Kth step
C nia JRL of the factorization, JRL(K) points to the head
C of a linked list in JRL of column indices J
C such J .LT. K and L(KJ) is nonzero. Zero
C indicates the end of the list. IRL(J) (J.LT.K)

C points to the smallest 1 such that I .GE. K and
C L(I,J) is nonzero.
C Size of each - N.
C fia ROW - holds intermediate values In calculation of U and L.
C Size - N.
C fia TMP - holds new right-hand side b" for solution of the
C equation Ux = b'.
C Size - N.
C
C Internal variables:

C JMIN, JMAX - indices of the first and last positions in a row to
C be examined.
C SUM - used in calculating TMP.
C

INTEGER RK, UMAX
REAL LKI
INTEGER R(l), C(i), IC(l), IA(1), JA(1), IL(1), JL(1), IJL(l)

INTEGER IU(i), JU(I), IJU(1), IRL(1), JRL(l), FLAG
REAL A(l), L(I), D(1), U(I), Z(I), B(I), ROW(I), TMP(I)

****** Initialize pointers and test storage **,,,,,**************
IF(IL(N+I)-i .GT. LMAX) GO TO 104

IF(IU(N+I)-l .GT. UMAX) GO TO 107
DO I K-i,N

IRL(K) - IL(K)
JRL(K) - 0

I CONTINUE
C
C ****** For each row

DO 19 K-1,N
C ****** Reverse JRL and zero ROW where Kth row of L will fill in ***

ROW(K) - 0
II - 0
IF (JRL(K) .EQ. 0) Go TO 3
I - JRL(K)

2 12 - JRL(I)
JRL(I) - II
11 = I

ROW(M) = 0
I=-12

IF (I .NE. 0) GO TO 2

3 JMIN = IJU(K)
JMAX - JMIN + IU(K+I) - IU(K) - I
IF (JMIN .GT. JMAX) GO TO 5

DO 4 J-JMINJMAX
4 ROW(JU(J)) - 0

C ****** Place Kth row of A in ROW *****************
5 RK - R(K)

JMIN - IA(RK)

3MAX = 1A(RK+I) - 1
DO 6 J-JMIN,JMAX

ROW(IC(JA(J))) - A(J)

6 CONTINUE

C ~*~* Initialize SUM, and link through JRL **~**~****
SUM -B(RK)

IF (I .EQ. 0) Go TO 10
C **** Assign the Kth row of L and adjust ROW, SUM ~~~***

7 LKI - -ROW(l)
C ~*~* If L is not required, then comment out the following line *

L(IRL(I)) - -LKI
SUM -SUM + LKI *TMP(I)
JMIN - 1(I)
JMAX - 1(1+1) 1

IF (JMIN .GT. JMAX) GO TO 9
MU - IJUM(1 - JMIN
DO 8 J-JMIN,JMAX

8 ROW(JU(MU+J)) - ROW(JU(M4U+J)) + LKI * (J)
9 1 - JRL(I)

IF (I .NE. 0) GO To 7
C
C *~***** Assign Kth row of U and diagonal D, set TMP(K) ******

10 IF (ROW(K) .EQ. 0) GO TO 108
DK - 1 / ROW(K)
0(K) - DK
TMP(K) - SUM * OK
IF (K .EQ. N) GO TO 19
JMIN - 111(K)
JMAX - IU(K+1) - 1

IF (JMIN .GT. JMAX) Go To 12
MU - 1.11(K) - JMIN
DO 11 J-JMIN,JMAX

11 UMJ - ROW(JU(MU+J)) * DK
12 CONTINUE

C
C ****** Update IRL and JRL, keeping JRL in decreasing order ****

13 1 - 11

IF (I .EQ. 0) GO TO 18
14 IRL(I - IRL(1) + I

11I JRL(I)
IF (IRL(I) .GE. IL(I+I)) GO TO 17
IJLB - IRL(I) - IL(I) + IJL(I)

F15 IF (IG.JLJ)GO TO 16
J = JRL(J)
GO To 15

16 JRL(I) = JRL(J)

JRL(J) - I
17 1-I11

IF (I .NE. 0) GO To 14
18 IF (IRL(K) .GE. IL(K+1)) GO To 19

J1 = JL(IJL(K))
JRL(K) = JRL(J)
JRL(J) -K

19 CONTINUE

C
C ***** Solve Ox - TMP by back substitution ***********

K -N
D0 22 1-1,N

SUM -TMP(K)

JMIN IU1(K)
JMAX -IU(K+1) - 1

IF (JMIN .GT. JMAX) GO TO 21
MU - 1.30(K) - JMIN
DO 20 J-JMIN,JMAX

20 SUM -SUIM - U(i) *TMP(JU(MU+J))
21 IMP(K) -SUM

Z(C(K)) - SUM
22 K-K-1

FLAG -0
RETURN

C
C ** ERROR: Insufficient Storage for L
104 FLAG -4*N+I1

RETURN
C ** ERROR: Insufficient Storage for U
107 FLAG -7*N+ I

RETURN
C ** ERROR: Zero Pivot
108 FLAG - 8*N + K

RETURN
END

C
C -

C**Subroutine NNSC

C*** Numerical solution of sparse nonsymmetric system of linear
C equations given LDU-factorization (compressed pointer storage)
C

SUBROUTINE NNSC
* (N, R, C, IL, JL, IJL, L, D, 10, JO, I30, U, Z9 B, TMP)

C
C Input variables: N, R, C, IL, JL, IJL, L, D, 10, JU, IJU, U, B
C Output variables: Z
C
C Parameters used internally:
C fia ITMP - temporary vector which gets result of solving Ly - b.
C ISize -N.
C
C Internal variables:
C JMIN, JMAX - indices of the first and last positions in a row of
C U or L to be used.
C

INTEGER R(l), C(l), IL(l), JL(1), IJL(1), 11U(1), JU(1), IJU(l)
REAL L(I), D(1), U(1), B(1), z(1), TMP(I)

C
C **** Set TMP to reordered B

DO 1 K-1,N
I TMP(K) - B(R(K))

C ~*** Solve Ly - b by forward substitution
DO 3 K-I,N

JMIN - IL(K)
JMAX - IL(K+1)-

TMPK - -D(K) * TMP(K)
ThIP(K) - -TMPK
IF (JhIN .GT. JMAX) GO TO 3

ML - IJL(K) - MhIN

DO 2 J-JMIN,JMAX
2 TMP(JL(ML+J)) - TMP(JL(NL+J)) + TMPC L(J)

3 CONTINUE

C****** Solve Ux - y by back substitution ************

K -N
DO 6 1-1,N

SUM -- TMP(K)
JMIN -IU(K)
JMAX -IU(K+I) - 1

IF (JMIN .GT. JMAX) GO TO 5

MU - IJU(K) - JMIN
DO 4 J-JKIN,JMK

4 SUM -SUM + U(J) *TMP(JU(MU+J))

5 TMP(K) -- SUM
Z(C(K)) - -SUM
K -K-I1

6 CONTINUE

RETURN
END

C Appendix 4 7/31/77
C
C Test Driver for Sparse Nonsymmetric Matrix Package
C
C

C
* *
* Program NTST

C*
*
* Test Driver for Nonsymmetric Codes in Yale Sparse Matrix Package

C
C Variables:
C
C NG - size of grid used to generate test problem.
C
C N - number of variables and equations (- NG x NG).
C

C IA - INTEGER one-dimensional array used to store row pointers
C to JA and A; DIMENSION = N+1.
C

C JA - INTEGER one-dimensional array used to store column
C indices of nonzero elements of M; DIMENSION - number of
C nonzero entries in M.
C
C A - REAL one-dimensional array used to store nonzero elements
C of M; DIMENSION - number of nonzero entries in M.
C

C X - REAL one-dimensional array used to store solution x;
C DIMENSION = N.
C
C B - REAL one-dimensional array used to store right-hand-side b
C DIMENSION - N.

C
C P - INTEGER one-dimensional array used to store permutation of

C rows and columns for reordering linear system;
C DIMENSION = N.
C
C IP - INTEGER one-dimensional array used to store inverse of
C permutation stored in P; DIMENSION - N.
C

C NSP - declared dimension of one-dimensional arrays ISP and RSP.
C
C ISP - INTEGER one-dimensional array used as working storage
C (equivalenced to RSP); DIMENSION - NSP.
C
C RSP - REAL one-dimensional array used as working storage
C (equivalenced to ISP); DIMENSION = NSP.

C
C ESP - INTEGER amount of excess storage available
C

C
INTEGER IA([OI), JA(500), P(100), IP(100), ISP(1500), ESP,

* CASE, PATH, FLAG, APTR,VP,VQ, X, XMIN,XMAX, Y,YMIN,YMAX
REAL A(500). Z(lO0), B(100), RSP(1500), NAME(3)

EQUIVALENCE (ISP(1), RSP(I))

DATA NSP/1500/. EPS/IE-5/,
* NAME(1)/'N'/, NAME(2)/'T'/, NAME(3)/*C'/

C

INDEX(IJ) - NG*I + J - NG
C

NG - 3
N - NG*NG

C

C ****** CASE-I -> NDRV. CASE-2 => TDRV, CASE-3 -> CDRV *********

Do 5 CASEI1,3
C
C ****** Set up matrix for five-point finite difference operator *

APTR = 1
DO 2 I-1,NG

DO 2 J-ING

VP - INDEX (I, J)

P(VP) = VP

IP(VP) - VP

LA(VP) - APTR
SUM -0

XMIN - MAXO (1, I-I)
XMAX = MIND (NG, I+l)

YMIN - MAXO (1, J-1)
YMAX - MIN0 (NG, J+1)

DO 1 X=XMIN,XMAX
DO I Y-YMIN,YMAX

IF ((X-I) * (Y-J) .NE. 0) GO TO I

VQ
-

INDEX(X, Y)

JA(APTR) =vQ

A(APTR) - 8

IF (VP .LT. VQ) A(APTR) - -1

IF (VP .GT. VQ) A(APTR) - -2

SUM - SUM + A(APTR) * VQ

APTR = APTR + 1
1 CONTINUE

B(VP) = SUM
2 CONTINUE

IA(N+I) - APTR
NZA = IA(N+I) - I

C
C ***** Output original array A

IF (CASE.EQ.1) PRINT 1001, NG,NG

1001 FORMAT (/ *** FIVE-POINT OPERATOR ON

II, BY ' II, ' GRID *)

IF (CASE.EQ.1) PRINT 1002, (IA(I),I-1,N), IA(N+I)

1002 FORMAT (/ COEFFICIENT MATRIX: o/

/"I IA (INDICES OF FIRST ELEMENTS IN ROWS)'

/(1015))

IF (CASE.EQ.1) PRINT 1003, (I,JA(I),A(I), I-1,NZA)

1003 FORMAT (/ JA A "

/ * I COLUMN INDICES MATRIX'

* /(13, 110, F16.5))

IF (CASE.EQ.1) PRINT 1004, (B(I), I=1,N)

1004 FORMAT (/' RIGHT HAND SIDE B:

• /(5FI0.5))

C
C * Call ODRV

FLAG = 0
PATH -
CALL ODRV

* (N, IA,JA,A, P,IP, NSP,RSP, PATH, FLAG)

IF (FLAG.NE.O) GO TO 101

c

C * Output ordering of variables/equations *****************
IF (CASE.EQ.I) PRINT 1005, (I,P(I),IP(1), l-,N)

1005 FORMAT (/ ROW/COLUMN ORDERING FROM ODRV: '/
* /" P IP
* / 1 ROW/COL ORDERING INVERSE ORDERING
* /(13, 110, 120))

C
C***** Call NDRV / TDRV / CDRV **********************************

PATH - I
IF (CASE.EQ.1) CALL NDRV

* (N, P,P,IP, IA,JA,A, B, Z, NSP,ISP,RSPESP, PATH, FLAG)
IF (CASE.EQ.2) CALL TDRV

* (N, P,IP, IA,JA,A, B. Z, NSP,ISP,RSP,ESP, FLAG)

IF (CASE.EQ.3) CALL CDRV
* (N, P,P,IP, IA,JA,A, B, Z, NSP,ISP,RSP,ESP, PATH, FLAG)

IF (FLAG. EQ. O) GO TO 3
PRINT 1006, NAME(CASE), FLAG

1006 FORMAT (/' ERROR IN ', Al, 'DRV: FLAG = ", 15)
GO TO 5

C

C ****** Calculate error **
3 SUM=0

DO 4 I-1,N
4 SUM - SUM + ((Z(I)-I)/I)**2

RMS - SQRT(SUM/N)
C
C ****** Output solution and error measure *************

PRINT 1007, NAME(CASE), (Z(I), I-I,N)
1007 FORMAT (/' SOLUTION FROM ', Al, 'DRV: "

* /(5FIO.5))

C
IF (RMS.LE.EPS) PRINT 1008, RMS

1008 FORMAT (/ SOLUTION CORRECT: RMS ERROR - -, IPE8.2)
IF (RMS.GT.EPS) PRINT 1009, RMS

1009 FORMAT (/' SOLUTION INCORRECT: RMS ERROR = ", IPE8.2)
C

PRINT 1010, ESP
1010 FORMAT (/ EXTRA STORAGE AVAILABLE 1 , 14)
C

5 CONTINUE
STOP

C
C ****** Error messages ***
101 PRINT 1013, FLAG

1013 FORMAT (/ ERROR IN ODRV: FLAG - ", 15)
STOP
END

Akpendix 5

Sampie _Output From Test Driver

*** FIVE-POINT OPERATOR ON 3 BY 3 GRID

COEFFICIENT MATRIX:

IA (INDICES OF FIRST ELEMENTS IN ROWS)
1 4 8 11 15 20 24 27 31 34

JA A
I COLUMN INDICES MATRIX

1 1 8.00000
2 2 -1.00000
3 4 -1.00000

4 1 -2.00000
5 2 8.00000
6 3 -1.00000
7 5 -1.00000
8 2 -2.00000
9 3 8.00000

10 6 -1.00000
11 1 -2.00000
12 4 8.00000
13 5 -1.00000
14 7 -1.00000
15 2 -2.00000
16 4 -2.00000
17 5 8.00000
18 6 -1.00000
19 8 -1.00000
20 3 -2.00000
21 5 -2.00000
22 6 8.00000
23 9 -1.00000
24 4 -2.00000
25 7 8.00000
26 8 -1.00000

27 5 -2.00000
28 7 -2.00000
29 8 8.00000
30 9 -1.00000

31 6 -2.00000
32 8 -2.00000

33 9 8.00000

RIGHT HAND SIDE B:
2.00000 6.00000 14.00000 18.00000 14.00000

23.00000 40.00000 31.00000 44.00000

ROW/COLUMN ORDERING FROM ODRV:

P IP
I ROW/COL ORDERING INVERSE ORDERING

2 3 7
3 7 2
4 9 8
5 6 6
6 5 5
7 2 3
8 4 9
9 8 4

SOLUTION FROM NDRV:
1.00000 2.00000 3.00000 4.00000 5.00000
6.00000 7.00000 8.00000 9.00000

SOLUTION CORRECT: RMS ERROR - 6.36E-09

EXTRA STORAGE AVAILABLE = 1384

SOLUTION FROM TDRV:
1.00000 2.00000 3.00000 4.00000 5.00000
6.00000 7.00000 8.00000 9.00000

SOLUTION CORRECT: RMS ERROR = 6.36E-09

EXTRA STORAGE AVAILABLE - 1412

SOLUTION FROM CDRV:
1.00000 2.00000 3.00000 4.00000 5.00000
6.00000 7.00000 8.00000 9.00000

SOLUTION CORRECT: RMS ERROR = 6.36E-09

EXTRA STORAGE AVAILABLE = 1364

